Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-05

AUTHORS

A M van der Bliek, E M Meyerowitz

ABSTRACT

Temperature-sensitive paralysis is the most striking defect of adult Drosophila carrying the shibire mutation. This is believed to be due to a reversible block of endocytosis, which prevents membrane cycling and thus depletes synaptic vesicles. The shibire mutation also affects many tissues outside the nervous system. We have now mapped and characterized the shibire gene. A 275-kilobase yeast artificial chromosome was subcloned into cosmids, among which the gene was then located by analysing with restriction-fragment length polymorphisms. A 15-kilobase fragment of wild-type DNA rescues the mutant phenotype and the sequence of two mutant alleles show differences with wild type, demonstrating that we have isolated the shibire gene. The gene encodes a protein that is highly similar to rat dynamin, 69% of the amino-acid sequence is identical. Dynamin is a GTP-driven mechanochemical enzyme related to mammalian mx-proteins and to the yeast vps 1 gene product. Because the shibire gene product and dynamin have extensive similarity, we propose that they are cognate homologues. Dynamin causes microtubules to slide along each other in vitro and in extracts it is associated with a distinct, but so far uncharacterized, membrane fraction. In light of the shibire phenotype, we suggest that these proteins provide the motor for vesicular transport during endocytosis. More... »

PAGES

411-414

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/351411a0

DOI

http://dx.doi.org/10.1038/351411a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033244420

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/1674590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ca(2+) Mg(2+)-ATPase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cloning, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila melanogaster", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dynamins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endocytosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Restriction Fragment Length", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Restriction Mapping", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of Biology, California Institute of Technology, Pasadena 91125."
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Bliek", 
        "givenName": "A M", 
        "id": "sg:person.0731375611.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731375611.03"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Meyerowitz", 
        "givenName": "E M", 
        "id": "sg:person.0724042577.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724042577.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.bi.59.070190.004401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002135795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.81.3.520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007531115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/17.1.458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009468388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(89)90027-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012768702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/01677069009084149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018386170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00267238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020089139", 
          "https://doi.org/10.1007/bf00267238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00267238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020089139", 
          "https://doi.org/10.1007/bf00267238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-1606(90)90212-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021089558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.111.6.3023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022526838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/347256a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028569139", 
          "https://doi.org/10.1038/347256a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/346335a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031157883", 
          "https://doi.org/10.1038/346335a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/349713a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035858320", 
          "https://doi.org/10.1038/349713a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(90)90334-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039030931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(90)90239-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043089667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(86)90493-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044470441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcp.1041410220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046199953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.86.13.4968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046905638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(90)90056-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047047610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(90)90056-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047047610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/15.20.8125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049036590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-1606(73)90248-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049726681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(90)90070-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050529802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/01677069009107110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051607179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2510296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062541732"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-05", 
    "datePublishedReg": "1991-05-01", 
    "description": "Temperature-sensitive paralysis is the most striking defect of adult Drosophila carrying the shibire mutation. This is believed to be due to a reversible block of endocytosis, which prevents membrane cycling and thus depletes synaptic vesicles. The shibire mutation also affects many tissues outside the nervous system. We have now mapped and characterized the shibire gene. A 275-kilobase yeast artificial chromosome was subcloned into cosmids, among which the gene was then located by analysing with restriction-fragment length polymorphisms. A 15-kilobase fragment of wild-type DNA rescues the mutant phenotype and the sequence of two mutant alleles show differences with wild type, demonstrating that we have isolated the shibire gene. The gene encodes a protein that is highly similar to rat dynamin, 69% of the amino-acid sequence is identical. Dynamin is a GTP-driven mechanochemical enzyme related to mammalian mx-proteins and to the yeast vps 1 gene product. Because the shibire gene product and dynamin have extensive similarity, we propose that they are cognate homologues. Dynamin causes microtubules to slide along each other in vitro and in extracts it is associated with a distinct, but so far uncharacterized, membrane fraction. In light of the shibire phenotype, we suggest that these proteins provide the motor for vesicular transport during endocytosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/351411a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6325", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "351"
      }
    ], 
    "name": "Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic", 
    "pagination": "411-414", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e5ed1570f5273184b4c3363eaa7737cf1504d4962d9fdb41ec4c852718ed140"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "1674590"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/351411a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033244420"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/351411a0", 
      "https://app.dimensions.ai/details/publication/pub.1033244420"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nature/journal/v351/n6325/full/351411a0.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/351411a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/351411a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/351411a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/351411a0'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      66 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/351411a0 schema:about N056e5f7db0a84cf0a4b04f8fb7bdf3c5
2 N089e899711ee4b4ab5ea001b19ac4188
3 N1519271eff3c4adca54784c2c06d1836
4 N15e40b1af5a54f37a5b61fa9bf5674ef
5 N34e5145b2d484c78b312f5111ec5def2
6 N48587f38221e4a2a8fb09f1aa1b043f5
7 N5cd27dad9f5d4ce08320ccd44cdb945c
8 N5cfcee229c1949229bb7fe359a0a8c56
9 N64d4fa22f2e643078e5065480a6a44d1
10 N6ee49ef76efa4d559892e7122e7149e6
11 N760b0ee8508c4173bb18d2098f35df35
12 N7a0d1f4dc16c425097d8aa33998c4a49
13 Nb10fe3f041c347b49bae54a4afa9238b
14 Nd5b8e1b0c4394274a1f417b08c619104
15 Nd655dbd034e14b56b921dba644a1dd1e
16 anzsrc-for:06
17 anzsrc-for:0601
18 schema:author N4c16bddfc0aa48589db61859987ba98f
19 schema:citation sg:pub.10.1007/bf00267238
20 sg:pub.10.1038/346335a0
21 sg:pub.10.1038/347256a0
22 sg:pub.10.1038/349713a0
23 https://doi.org/10.1002/jcp.1041410220
24 https://doi.org/10.1016/0012-1606(73)90248-0
25 https://doi.org/10.1016/0012-1606(90)90212-2
26 https://doi.org/10.1016/0092-8674(86)90493-9
27 https://doi.org/10.1016/0092-8674(89)90027-5
28 https://doi.org/10.1016/0092-8674(90)90070-u
29 https://doi.org/10.1016/0092-8674(90)90239-b
30 https://doi.org/10.1016/0092-8674(90)90334-b
31 https://doi.org/10.1016/0378-1119(90)90056-w
32 https://doi.org/10.1073/pnas.86.13.4968
33 https://doi.org/10.1083/jcb.111.6.3023
34 https://doi.org/10.1083/jcb.81.3.520
35 https://doi.org/10.1093/nar/15.20.8125
36 https://doi.org/10.1093/nar/17.1.458
37 https://doi.org/10.1126/science.2510296
38 https://doi.org/10.1146/annurev.bi.59.070190.004401
39 https://doi.org/10.3109/01677069009084149
40 https://doi.org/10.3109/01677069009107110
41 schema:datePublished 1991-05
42 schema:datePublishedReg 1991-05-01
43 schema:description Temperature-sensitive paralysis is the most striking defect of adult Drosophila carrying the shibire mutation. This is believed to be due to a reversible block of endocytosis, which prevents membrane cycling and thus depletes synaptic vesicles. The shibire mutation also affects many tissues outside the nervous system. We have now mapped and characterized the shibire gene. A 275-kilobase yeast artificial chromosome was subcloned into cosmids, among which the gene was then located by analysing with restriction-fragment length polymorphisms. A 15-kilobase fragment of wild-type DNA rescues the mutant phenotype and the sequence of two mutant alleles show differences with wild type, demonstrating that we have isolated the shibire gene. The gene encodes a protein that is highly similar to rat dynamin, 69% of the amino-acid sequence is identical. Dynamin is a GTP-driven mechanochemical enzyme related to mammalian mx-proteins and to the yeast vps 1 gene product. Because the shibire gene product and dynamin have extensive similarity, we propose that they are cognate homologues. Dynamin causes microtubules to slide along each other in vitro and in extracts it is associated with a distinct, but so far uncharacterized, membrane fraction. In light of the shibire phenotype, we suggest that these proteins provide the motor for vesicular transport during endocytosis.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf Nd08b4cbc0d8340069c034eb85d5f6b6b
48 Ne79ebe083ee548ce85d05c50692ec58b
49 sg:journal.1018957
50 schema:name Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic
51 schema:pagination 411-414
52 schema:productId N2b58c84ddb1f4f93afaeb14b94bed3b0
53 N30e22cc888474f44901d1e1fc0a0367d
54 N983f7846504141a6a4042ea262d299c0
55 Nc8b3f3d09d56474f8673aa9c72b6d201
56 Ne9ce479decec4179a542ec6778bf49c4
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033244420
58 https://doi.org/10.1038/351411a0
59 schema:sdDatePublished 2019-04-11T01:47
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nb3a4f10bb8cb406d94f3c95e4563ca9e
62 schema:url http://www.nature.com/nature/journal/v351/n6325/full/351411a0.html
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N056e5f7db0a84cf0a4b04f8fb7bdf3c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Drosophila melanogaster
68 rdf:type schema:DefinedTerm
69 N089e899711ee4b4ab5ea001b19ac4188 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Polymorphism, Restriction Fragment Length
71 rdf:type schema:DefinedTerm
72 N1519271eff3c4adca54784c2c06d1836 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Cloning, Molecular
74 rdf:type schema:DefinedTerm
75 N15e40b1af5a54f37a5b61fa9bf5674ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Drosophila Proteins
77 rdf:type schema:DefinedTerm
78 N2b58c84ddb1f4f93afaeb14b94bed3b0 schema:name nlm_unique_id
79 schema:value 0410462
80 rdf:type schema:PropertyValue
81 N30e22cc888474f44901d1e1fc0a0367d schema:name pubmed_id
82 schema:value 1674590
83 rdf:type schema:PropertyValue
84 N34e5145b2d484c78b312f5111ec5def2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Molecular Sequence Data
86 rdf:type schema:DefinedTerm
87 N48587f38221e4a2a8fb09f1aa1b043f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Dynamins
89 rdf:type schema:DefinedTerm
90 N4c16bddfc0aa48589db61859987ba98f rdf:first sg:person.0731375611.03
91 rdf:rest Nc6ebb630efb746f5a390f81814c84423
92 N5cd27dad9f5d4ce08320ccd44cdb945c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Animals
94 rdf:type schema:DefinedTerm
95 N5cfcee229c1949229bb7fe359a0a8c56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Amino Acid Sequence
97 rdf:type schema:DefinedTerm
98 N64d4fa22f2e643078e5065480a6a44d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Mutation
100 rdf:type schema:DefinedTerm
101 N6ee49ef76efa4d559892e7122e7149e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Polymerase Chain Reaction
103 rdf:type schema:DefinedTerm
104 N760b0ee8508c4173bb18d2098f35df35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Restriction Mapping
106 rdf:type schema:DefinedTerm
107 N7a0d1f4dc16c425097d8aa33998c4a49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Genes
109 rdf:type schema:DefinedTerm
110 N983f7846504141a6a4042ea262d299c0 schema:name dimensions_id
111 schema:value pub.1033244420
112 rdf:type schema:PropertyValue
113 Nb10fe3f041c347b49bae54a4afa9238b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Endocytosis
115 rdf:type schema:DefinedTerm
116 Nb3a4f10bb8cb406d94f3c95e4563ca9e schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nc6ebb630efb746f5a390f81814c84423 rdf:first sg:person.0724042577.65
119 rdf:rest rdf:nil
120 Nc8b3f3d09d56474f8673aa9c72b6d201 schema:name doi
121 schema:value 10.1038/351411a0
122 rdf:type schema:PropertyValue
123 Nd08b4cbc0d8340069c034eb85d5f6b6b schema:issueNumber 6325
124 rdf:type schema:PublicationIssue
125 Nd5b8e1b0c4394274a1f417b08c619104 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Cell Membrane
127 rdf:type schema:DefinedTerm
128 Nd655dbd034e14b56b921dba644a1dd1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Ca(2+) Mg(2+)-ATPase
130 rdf:type schema:DefinedTerm
131 Ne79ebe083ee548ce85d05c50692ec58b schema:volumeNumber 351
132 rdf:type schema:PublicationVolume
133 Ne9ce479decec4179a542ec6778bf49c4 schema:name readcube_id
134 schema:value 9e5ed1570f5273184b4c3363eaa7737cf1504d4962d9fdb41ec4c852718ed140
135 rdf:type schema:PropertyValue
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biochemistry and Cell Biology
141 rdf:type schema:DefinedTerm
142 sg:journal.1018957 schema:issn 0090-0028
143 1476-4687
144 schema:name Nature
145 rdf:type schema:Periodical
146 sg:person.0724042577.65 schema:familyName Meyerowitz
147 schema:givenName E M
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724042577.65
149 rdf:type schema:Person
150 sg:person.0731375611.03 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
151 schema:familyName van der Bliek
152 schema:givenName A M
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731375611.03
154 rdf:type schema:Person
155 sg:pub.10.1007/bf00267238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020089139
156 https://doi.org/10.1007/bf00267238
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/346335a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031157883
159 https://doi.org/10.1038/346335a0
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/347256a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028569139
162 https://doi.org/10.1038/347256a0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/349713a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035858320
165 https://doi.org/10.1038/349713a0
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/jcp.1041410220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046199953
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0012-1606(73)90248-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049726681
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0012-1606(90)90212-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021089558
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0092-8674(86)90493-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044470441
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/0092-8674(89)90027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012768702
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0092-8674(90)90070-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1050529802
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0092-8674(90)90239-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1043089667
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0092-8674(90)90334-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1039030931
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0378-1119(90)90056-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1047047610
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.86.13.4968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046905638
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1083/jcb.111.6.3023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022526838
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1083/jcb.81.3.520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007531115
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/nar/15.20.8125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049036590
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/nar/17.1.458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009468388
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.2510296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062541732
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1146/annurev.bi.59.070190.004401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002135795
198 rdf:type schema:CreativeWork
199 https://doi.org/10.3109/01677069009084149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018386170
200 rdf:type schema:CreativeWork
201 https://doi.org/10.3109/01677069009107110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051607179
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
204 schema:name Division of Biology, California Institute of Technology, Pasadena 91125.
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...