Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-11

AUTHORS

C. Pfleiderer, S. R. Julian, G. G. Lonzarich

ABSTRACT

A century of research on magnetic phenomena had led to the view that the normal state of itinerant-electron ferromagnets such as Fe, Ni and Co could be described in terms of the standard model of the metallic state or its extension known as the nearly ferromagnetic Fermi liquid theory. In recent years, however, a large body of observations has accumulated from various complex intermetallic systems that raises the possibility that this assumption might be wrong. Here we examine this issue by means of high-precision measurements of the electrical transport and magnetic properties of pure ferromagnets-in particular, MnSi-in which the Curie temperature is tuned towards absolute zero by the application of hydrostatic pressure. With this method, it is possible for us to study the normal state over an extraordinarily large range of temperature of up to five orders of magnitude above the Curie temperature. Our results using MnSi reveal a particularly striking combination of properties-most notably a T3/2 power law for the resistivity-showing clearly that the normal state of this itinerant-electron ferromagnet cannot be described in terms of the standard model of metals. More... »

PAGES

427

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35106527

DOI

http://dx.doi.org/10.1038/35106527

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039062421

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11719799


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "*Physikalisches Institut, Universit\u00e4t Karlsruhe, D-76128 Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfleiderer", 
        "givenName": "C.", 
        "id": "sg:person.0645154744.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "\u2020Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Julian", 
        "givenName": "S. R.", 
        "id": "sg:person.01204063632.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204063632.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "\u2020Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lonzarich", 
        "givenName": "G. G.", 
        "id": "sg:person.011102576514.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011102576514.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35088106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004001256", 
          "https://doi.org/10.1038/35088106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35088106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004001256", 
          "https://doi.org/10.1038/35088106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(99)02545-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006384323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4363(77)90171-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015702014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4363(77)90171-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015702014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001114", 
          "https://doi.org/10.1007/978-3-642-82499-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001114", 
          "https://doi.org/10.1007/978-3-642-82499-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1938.0066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035531096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/9/31/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039289528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(75)90438-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040647355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(75)90438-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040647355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(86)90332-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041765551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(86)90332-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041765551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(89)90155-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043868859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(89)90155-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043868859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35083531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046812674", 
          "https://doi.org/10.1038/35083531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35083531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046812674", 
          "https://doi.org/10.1038/35083531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01362778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051195461", 
          "https://doi.org/10.1007/bf01362778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01362778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051195461", 
          "https://doi.org/10.1007/bf01362778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyscol:19786588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056997635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1708422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057777312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/14/31/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058959353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/18/22/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058962379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.2057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.2057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.5884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.5884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.14019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.14019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.44.842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063103676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.53.2726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063107894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.54.2975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063108571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814536769_0014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088752884"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-11", 
    "datePublishedReg": "2001-11-01", 
    "description": "A century of research on magnetic phenomena had led to the view that the normal state of itinerant-electron ferromagnets such as Fe, Ni and Co could be described in terms of the standard model of the metallic state or its extension known as the nearly ferromagnetic Fermi liquid theory. In recent years, however, a large body of observations has accumulated from various complex intermetallic systems that raises the possibility that this assumption might be wrong. Here we examine this issue by means of high-precision measurements of the electrical transport and magnetic properties of pure ferromagnets-in particular, MnSi-in which the Curie temperature is tuned towards absolute zero by the application of hydrostatic pressure. With this method, it is possible for us to study the normal state over an extraordinarily large range of temperature of up to five orders of magnitude above the Curie temperature. Our results using MnSi reveal a particularly striking combination of properties-most notably a T3/2 power law for the resistivity-showing clearly that the normal state of this itinerant-electron ferromagnet cannot be described in terms of the standard model of metals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35106527", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6862", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "414"
      }
    ], 
    "name": "Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets", 
    "pagination": "427", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ba12aa0b4afde782ec22277b6be4ab13acf91117ada70a0281d3b933ac17187c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11719799"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35106527"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039062421"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35106527", 
      "https://app.dimensions.ai/details/publication/pub.1039062421"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53981_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35106527"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35106527'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35106527'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35106527'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35106527'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35106527 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N3152e413b88b4661b146e91184fa5c67
4 schema:citation sg:pub.10.1007/978-3-642-82499-9
5 sg:pub.10.1007/bf01362778
6 sg:pub.10.1038/35083531
7 sg:pub.10.1038/35088106
8 https://doi.org/10.1016/0304-8853(86)90332-x
9 https://doi.org/10.1016/0375-9601(75)90438-7
10 https://doi.org/10.1016/0378-4363(77)90171-1
11 https://doi.org/10.1016/0921-4526(89)90155-5
12 https://doi.org/10.1016/s0921-4526(99)02545-4
13 https://doi.org/10.1051/jphyscol:19786588
14 https://doi.org/10.1063/1.1708422
15 https://doi.org/10.1088/0022-3719/14/31/016
16 https://doi.org/10.1088/0022-3719/18/22/017
17 https://doi.org/10.1088/0953-8984/9/31/019
18 https://doi.org/10.1098/rspa.1938.0066
19 https://doi.org/10.1103/physrevb.14.2057
20 https://doi.org/10.1103/physrevb.31.5884
21 https://doi.org/10.1103/physrevb.48.7183
22 https://doi.org/10.1103/physrevb.55.8330
23 https://doi.org/10.1103/physrevb.56.14019
24 https://doi.org/10.1103/physrevlett.63.1996
25 https://doi.org/10.1142/9789814536769_0014
26 https://doi.org/10.1143/jpsj.44.842
27 https://doi.org/10.1143/jpsj.53.2726
28 https://doi.org/10.1143/jpsj.54.2975
29 schema:datePublished 2001-11
30 schema:datePublishedReg 2001-11-01
31 schema:description A century of research on magnetic phenomena had led to the view that the normal state of itinerant-electron ferromagnets such as Fe, Ni and Co could be described in terms of the standard model of the metallic state or its extension known as the nearly ferromagnetic Fermi liquid theory. In recent years, however, a large body of observations has accumulated from various complex intermetallic systems that raises the possibility that this assumption might be wrong. Here we examine this issue by means of high-precision measurements of the electrical transport and magnetic properties of pure ferromagnets-in particular, MnSi-in which the Curie temperature is tuned towards absolute zero by the application of hydrostatic pressure. With this method, it is possible for us to study the normal state over an extraordinarily large range of temperature of up to five orders of magnitude above the Curie temperature. Our results using MnSi reveal a particularly striking combination of properties-most notably a T3/2 power law for the resistivity-showing clearly that the normal state of this itinerant-electron ferromagnet cannot be described in terms of the standard model of metals.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N0f3fdb4279844da19d37f46587089596
36 Na6dee1af5f524d85b540fdbd4f91ab30
37 sg:journal.1018957
38 schema:name Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets
39 schema:pagination 427
40 schema:productId N2eeb910124fe4f5485426e3bba51c3ce
41 N431f7bb1f396489f84896a19ee45654e
42 N6ed993665e86443b89c76b32b9b3fec0
43 Ncde61e08418b467d92dd452ab84f31e0
44 Nfbf30131dd3141ddad3f8da89f5f227f
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039062421
46 https://doi.org/10.1038/35106527
47 schema:sdDatePublished 2019-04-11T12:11
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N2e14a269e4bf43a8b1934a3a0d1fa962
50 schema:url https://www.nature.com/articles/35106527
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0f3fdb4279844da19d37f46587089596 schema:issueNumber 6862
55 rdf:type schema:PublicationIssue
56 N2e14a269e4bf43a8b1934a3a0d1fa962 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N2eeb910124fe4f5485426e3bba51c3ce schema:name pubmed_id
59 schema:value 11719799
60 rdf:type schema:PropertyValue
61 N3152e413b88b4661b146e91184fa5c67 rdf:first sg:person.0645154744.12
62 rdf:rest Na94c92390aec4044a0fdae3f278377d5
63 N431f7bb1f396489f84896a19ee45654e schema:name readcube_id
64 schema:value ba12aa0b4afde782ec22277b6be4ab13acf91117ada70a0281d3b933ac17187c
65 rdf:type schema:PropertyValue
66 N6ed993665e86443b89c76b32b9b3fec0 schema:name nlm_unique_id
67 schema:value 0410462
68 rdf:type schema:PropertyValue
69 Na6dee1af5f524d85b540fdbd4f91ab30 schema:volumeNumber 414
70 rdf:type schema:PublicationVolume
71 Na94c92390aec4044a0fdae3f278377d5 rdf:first sg:person.01204063632.82
72 rdf:rest Nac3f621aa39f43e8afd905cd7343fc5d
73 Nac3f621aa39f43e8afd905cd7343fc5d rdf:first sg:person.011102576514.16
74 rdf:rest rdf:nil
75 Ncde61e08418b467d92dd452ab84f31e0 schema:name doi
76 schema:value 10.1038/35106527
77 rdf:type schema:PropertyValue
78 Nfbf30131dd3141ddad3f8da89f5f227f schema:name dimensions_id
79 schema:value pub.1039062421
80 rdf:type schema:PropertyValue
81 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
85 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
86 rdf:type schema:DefinedTerm
87 sg:journal.1018957 schema:issn 0090-0028
88 1476-4687
89 schema:name Nature
90 rdf:type schema:Periodical
91 sg:person.011102576514.16 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
92 schema:familyName Lonzarich
93 schema:givenName G. G.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011102576514.16
95 rdf:type schema:Person
96 sg:person.01204063632.82 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
97 schema:familyName Julian
98 schema:givenName S. R.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204063632.82
100 rdf:type schema:Person
101 sg:person.0645154744.12 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
102 schema:familyName Pfleiderer
103 schema:givenName C.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12
105 rdf:type schema:Person
106 sg:pub.10.1007/978-3-642-82499-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033001114
107 https://doi.org/10.1007/978-3-642-82499-9
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01362778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051195461
110 https://doi.org/10.1007/bf01362778
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/35083531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046812674
113 https://doi.org/10.1038/35083531
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/35088106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004001256
116 https://doi.org/10.1038/35088106
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0304-8853(86)90332-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041765551
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0375-9601(75)90438-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040647355
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0378-4363(77)90171-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015702014
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0921-4526(89)90155-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043868859
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0921-4526(99)02545-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006384323
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1051/jphyscol:19786588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056997635
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.1708422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057777312
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/0022-3719/14/31/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058959353
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1088/0022-3719/18/22/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058962379
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/0953-8984/9/31/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039289528
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1098/rspa.1938.0066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035531096
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.14.2057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521444
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.31.5884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537456
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.48.7183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569003
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.55.8330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584800
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.56.14019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060585681
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.63.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799596
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1142/9789814536769_0014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088752884
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1143/jpsj.44.842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063103676
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1143/jpsj.53.2726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063107894
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1143/jpsj.54.2975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063108571
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
161 schema:name †Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
164 schema:name *Physikalisches Institut, Universität Karlsruhe, D-76128 Karlsruhe, Germany
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...