High-Tc superconducting materials for electric power applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-11

AUTHORS

David Larbalestier, Alex Gurevich, D. Matthew Feldmann, Anatoly Polyanskii

ABSTRACT

Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds. More... »

PAGES

368-377

References to SciGraph publications

  • 1999-06. Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films in NATURE
  • 2001-08. High critical current density YBa2Cu3O7δ thick films using ion beam assisted deposition MgO bi-axially oriented template layers on nickel-based superalloy substrates in JOURNAL OF MATERIALS RESEARCH
  • 1998-03. Growth and characterization of (Bi, Pb)2Sr2Ca2Cu3Oxsingle crystals in JOURNAL OF MATERIALS RESEARCH
  • 2000-09. Enhanced supercurrent density in polycrystalline YBa2Cu3O7-δ at 77 K from calcium doping of grain boundaries in NATURE
  • 2001-05. High critical current density and enhanced irreversibility field in superconducting MgB2 thin films in NATURE
  • 1999. Applications of High Temperature Superconductors in PHYSICS AND MATERIALS SCIENCE OF VORTEX STATES, FLUX PINNING AND DYNAMICS
  • 2000-02. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ in NATURE
  • 1993-05. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system in NATURE
  • 2001-03. Strongly linked current flow in polycrystalline forms of the superconductor MgB2 in NATURE
  • 2001-03. Superconductivity at 39 K in magnesium diboride in NATURE
  • 2001-05. Rehearsals for prime time in NATURE
  • 2001-05. High critical currents in iron-clad superconducting MgB2 wires in NATURE
  • 1986-06. Possible highTc superconductivity in the Ba−La−Cu−O system in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 2001-09. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35104654

    DOI

    http://dx.doi.org/10.1038/35104654

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000028211

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11713544


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Larbalestier", 
            "givenName": "David", 
            "id": "sg:person.013512370724.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512370724.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gurevich", 
            "givenName": "Alex", 
            "id": "sg:person.0772346323.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772346323.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feldmann", 
            "givenName": "D. Matthew", 
            "id": "sg:person.010376274435.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376274435.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Polyanskii", 
            "givenName": "Anatoly", 
            "id": "sg:person.013664275634.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664275634.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35079018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048420451", 
              "https://doi.org/10.1038/35079018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1998.0075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050386416", 
              "https://doi.org/10.1557/jmr.1998.0075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.2001.0295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047831221", 
              "https://doi.org/10.1557/jmr.2001.0295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35001534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048431583", 
              "https://doi.org/10.1038/35001534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35079212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026721039", 
              "https://doi.org/10.1038/35079212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007284589", 
              "https://doi.org/10.1038/20880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052666736", 
              "https://doi.org/10.1038/35065039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35025014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034611262", 
              "https://doi.org/10.1038/35025014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01303701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036381635", 
              "https://doi.org/10.1007/bf01303701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35079030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012372838", 
              "https://doi.org/10.1038/35079030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/363056a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045624246", 
              "https://doi.org/10.1038/363056a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-4558-9_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089775466", 
              "https://doi.org/10.1007/978-94-011-4558-9_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35095012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010659756", 
              "https://doi.org/10.1038/35095012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052774821", 
              "https://doi.org/10.1038/35065559"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-11", 
        "datePublishedReg": "2001-11-01", 
        "description": "Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/35104654", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6861", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "414"
          }
        ], 
        "keywords": [
          "high-temperature cuprate superconductors", 
          "high critical current density", 
          "critical current density", 
          "electric power applications", 
          "power applications", 
          "magnetic energy storage (SMES) device", 
          "high performance conductors", 
          "cuprate superconductors", 
          "energy storage devices", 
          "conductor development", 
          "power cables", 
          "current limiter", 
          "cryogenic losses", 
          "electric devices", 
          "fundamental restrictions", 
          "fabrication issues", 
          "power industry", 
          "polycrystalline form", 
          "current density", 
          "prototype device", 
          "conductors", 
          "fundamental material", 
          "MgB2", 
          "superconductors", 
          "devices", 
          "cost-effective resolution", 
          "superconduct", 
          "widespread application", 
          "materials", 
          "transformer", 
          "YBa2Cu3Ox", 
          "applications", 
          "limiter", 
          "cable", 
          "wire", 
          "motor", 
          "Bi", 
          "temperature", 
          "properties", 
          "density", 
          "feasibility", 
          "industry", 
          "crystal structure", 
          "approach", 
          "structure", 
          "construction", 
          "resolution", 
          "restriction", 
          "form", 
          "remarkable compounds", 
          "choice", 
          "loss", 
          "production", 
          "issues", 
          "twin-track approach", 
          "development", 
          "compounds", 
          "Large-scale superconducting electric devices", 
          "superconducting electric devices", 
          "material anisotropy place fundamental restrictions", 
          "anisotropy place fundamental restrictions", 
          "place fundamental restrictions"
        ], 
        "name": "High-Tc superconducting materials for electric power applications", 
        "pagination": "368-377", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000028211"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35104654"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11713544"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35104654", 
          "https://app.dimensions.ai/details/publication/pub.1000028211"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_345.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/35104654"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35104654'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35104654'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35104654'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35104654'


     

    This table displays all metadata directly associated to this object as RDF triples.

    205 TRIPLES      22 PREDICATES      104 URIs      81 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35104654 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 anzsrc-for:0912
    4 schema:author N7226ce1d8b274a5fa2049667db9417eb
    5 schema:citation sg:pub.10.1007/978-94-011-4558-9_38
    6 sg:pub.10.1007/bf01303701
    7 sg:pub.10.1038/20880
    8 sg:pub.10.1038/35001534
    9 sg:pub.10.1038/35025014
    10 sg:pub.10.1038/35065039
    11 sg:pub.10.1038/35065559
    12 sg:pub.10.1038/35079018
    13 sg:pub.10.1038/35079030
    14 sg:pub.10.1038/35079212
    15 sg:pub.10.1038/35095012
    16 sg:pub.10.1038/363056a0
    17 sg:pub.10.1557/jmr.1998.0075
    18 sg:pub.10.1557/jmr.2001.0295
    19 schema:datePublished 2001-11
    20 schema:datePublishedReg 2001-11-01
    21 schema:description Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf Nd7e3d189ab9d4f79a068ab1e846b6aaa
    26 Nfa0a7e3fdc814750ba817052ebf27e1b
    27 sg:journal.1018957
    28 schema:keywords Bi
    29 Large-scale superconducting electric devices
    30 MgB2
    31 YBa2Cu3Ox
    32 anisotropy place fundamental restrictions
    33 applications
    34 approach
    35 cable
    36 choice
    37 compounds
    38 conductor development
    39 conductors
    40 construction
    41 cost-effective resolution
    42 critical current density
    43 cryogenic losses
    44 crystal structure
    45 cuprate superconductors
    46 current density
    47 current limiter
    48 density
    49 development
    50 devices
    51 electric devices
    52 electric power applications
    53 energy storage devices
    54 fabrication issues
    55 feasibility
    56 form
    57 fundamental material
    58 fundamental restrictions
    59 high critical current density
    60 high performance conductors
    61 high-temperature cuprate superconductors
    62 industry
    63 issues
    64 limiter
    65 loss
    66 magnetic energy storage (SMES) device
    67 material anisotropy place fundamental restrictions
    68 materials
    69 motor
    70 place fundamental restrictions
    71 polycrystalline form
    72 power applications
    73 power cables
    74 power industry
    75 production
    76 properties
    77 prototype device
    78 remarkable compounds
    79 resolution
    80 restriction
    81 structure
    82 superconduct
    83 superconducting electric devices
    84 superconductors
    85 temperature
    86 transformer
    87 twin-track approach
    88 widespread application
    89 wire
    90 schema:name High-Tc superconducting materials for electric power applications
    91 schema:pagination 368-377
    92 schema:productId N9be6c6cf5bef4c629825582f410c88d1
    93 Na9a43df9ae75402789da0241f96b7950
    94 Ncb4cf89ebe6f414bab5e0f6ca1b4ab66
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000028211
    96 https://doi.org/10.1038/35104654
    97 schema:sdDatePublished 2022-01-01T18:11
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N0b78ad070829469db4ee71ec2706e0e8
    100 schema:url https://doi.org/10.1038/35104654
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N0b78ad070829469db4ee71ec2706e0e8 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N562d512404ec4096b029faf60ae842e4 rdf:first sg:person.0772346323.19
    107 rdf:rest N8681516bcfb84427bf29a86bdb8e3b07
    108 N6e757fd7a3494d34b1a081f115544c05 rdf:first sg:person.013664275634.17
    109 rdf:rest rdf:nil
    110 N7226ce1d8b274a5fa2049667db9417eb rdf:first sg:person.013512370724.92
    111 rdf:rest N562d512404ec4096b029faf60ae842e4
    112 N8681516bcfb84427bf29a86bdb8e3b07 rdf:first sg:person.010376274435.82
    113 rdf:rest N6e757fd7a3494d34b1a081f115544c05
    114 N9be6c6cf5bef4c629825582f410c88d1 schema:name pubmed_id
    115 schema:value 11713544
    116 rdf:type schema:PropertyValue
    117 Na9a43df9ae75402789da0241f96b7950 schema:name doi
    118 schema:value 10.1038/35104654
    119 rdf:type schema:PropertyValue
    120 Ncb4cf89ebe6f414bab5e0f6ca1b4ab66 schema:name dimensions_id
    121 schema:value pub.1000028211
    122 rdf:type schema:PropertyValue
    123 Nd7e3d189ab9d4f79a068ab1e846b6aaa schema:issueNumber 6861
    124 rdf:type schema:PublicationIssue
    125 Nfa0a7e3fdc814750ba817052ebf27e1b schema:volumeNumber 414
    126 rdf:type schema:PublicationVolume
    127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Engineering
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Electrical and Electronic Engineering
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Materials Engineering
    135 rdf:type schema:DefinedTerm
    136 sg:journal.1018957 schema:issn 0028-0836
    137 1476-4687
    138 schema:name Nature
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.010376274435.82 schema:affiliation grid-institutes:grid.14003.36
    142 schema:familyName Feldmann
    143 schema:givenName D. Matthew
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376274435.82
    145 rdf:type schema:Person
    146 sg:person.013512370724.92 schema:affiliation grid-institutes:grid.14003.36
    147 schema:familyName Larbalestier
    148 schema:givenName David
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512370724.92
    150 rdf:type schema:Person
    151 sg:person.013664275634.17 schema:affiliation grid-institutes:grid.14003.36
    152 schema:familyName Polyanskii
    153 schema:givenName Anatoly
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664275634.17
    155 rdf:type schema:Person
    156 sg:person.0772346323.19 schema:affiliation grid-institutes:grid.14003.36
    157 schema:familyName Gurevich
    158 schema:givenName Alex
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772346323.19
    160 rdf:type schema:Person
    161 sg:pub.10.1007/978-94-011-4558-9_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089775466
    162 https://doi.org/10.1007/978-94-011-4558-9_38
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/bf01303701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036381635
    165 https://doi.org/10.1007/bf01303701
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/20880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007284589
    168 https://doi.org/10.1038/20880
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/35001534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048431583
    171 https://doi.org/10.1038/35001534
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/35025014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034611262
    174 https://doi.org/10.1038/35025014
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/35065039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052666736
    177 https://doi.org/10.1038/35065039
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/35065559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052774821
    180 https://doi.org/10.1038/35065559
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/35079018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048420451
    183 https://doi.org/10.1038/35079018
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/35079030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012372838
    186 https://doi.org/10.1038/35079030
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/35079212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026721039
    189 https://doi.org/10.1038/35079212
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/35095012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010659756
    192 https://doi.org/10.1038/35095012
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/363056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624246
    195 https://doi.org/10.1038/363056a0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1557/jmr.1998.0075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050386416
    198 https://doi.org/10.1557/jmr.1998.0075
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1557/jmr.2001.0295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047831221
    201 https://doi.org/10.1557/jmr.2001.0295
    202 rdf:type schema:CreativeWork
    203 grid-institutes:grid.14003.36 schema:alternateName Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA
    204 schema:name Department of Materials Science and Engineering, Department of Physics, Applied Superconductivity Center, University of Wisconsin, 53706, Madison, Wisconsin, USA
    205 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...