Materials for fuel-cell technologies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-11

AUTHORS

Brian C. H. Steele, Angelika Heinzel

ABSTRACT

Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials. More... »

PAGES

345-352

Journal

TITLE

Nature

ISSUE

6861

VOLUME

414

Related Patents

  • Hydrogel Barrier For Fuel Cells
  • Multi-Layered Conductive Metal Oxide Structures And Methods For Facilitating Enhanced Performance Characteristics Of Two-Terminal Memory Cells
  • Memory Power Management
  • Electrochemical Cells Comprising Laminar Flow Induced Dynamic Conducting Interfaces, Electronic Devices Comprising Such Cells, And Methods Employing Same
  • Electrochemical Cells
  • Non-Propulsive Miniature Power Device Based On Solid Oxide Fuel Cell And Combustion-Driven Thermal Transpiration Pump
  • Providing A Reference Voltage To A Cross Point Memory Array
  • Two-Terminal Reversibly Switchable Memory Device
  • Optimizing Reactions In Fuel Cells And Electrochemical Reactions
  • Serial Memory Interface
  • Memristor Comprising Film With Comb-Like Structure Of Nanocolumns Of Metal Oxide Embedded In A Metal Oxide Matrix
  • Electrochemical Cells Comprising Laminar Flow Induced Dynamic Conducting Interfaces, Electronic Devices Comprising Such Cells, And Methods Employing Same
  • Method Of Selective Foaming For Porous Polymeric Material
  • Catalyst Composite And Method For Manufacturing The Same
  • Comb Polymers For Supramolecular Nanoconfinement
  • Memory Element With A Reactive Metal Layer
  • Memory Element With A Reactive Metal Layer
  • Two-Terminal Reversibly Switchable Memory Device
  • High Efficiency Fuel Cell System
  • System For Flexible In Situ Control Of Water In Fuel Cells
  • Nanoscale Sofc Electrode Architecture Engineered Using Atomic Layer Deposition
  • Sensing A Signal In A Two-Terminal Memory Array Having Leakage Current
  • Memory Using Variable Tunnel Barrier Widths
  • Membraneless Electrochemical Cell And Microfluidic Device Without Ph Constraint
  • Polymeric Chip Comprising Two Three-Dimensional Scaffolds Connected By Microfluidic Channels To Simulate The Real Biological Environment Of Living Cells; Drug Screening
  • Permselective Composite Membrane For Electrochemical Cells
  • Solid Oxide Fuel Cell; Electrolyte Membrane Ceramic Of Cerium Oxide, Manganese Oxide, Molybdenum Oxide, Titania, Ceria Doped With Gadolinia Or Samaria, Niobia-Doped Ceria, Perovskites; Transition Metal Cations; Xerogel
  • Two-Terminal Reversibly Switchable Memory Device
  • Cyclopropenium Polymers And Methods For Making The Same
  • Chalogenides; Heat And Chemical Resistance; Protonation Glass, Ceramic
  • Storage Controller For Multiple Configurations Of Vertical Memory
  • Performing Data Operations Using Non-Volatile Third Dimension Memory
  • Memory Element With A Reactive Metal Layer
  • Multi-Resistive State Element With Reactive Metal
  • Two-Terminal Reversibly Switchable Memory Device
  • Online Monitoring Of Fuel Cell Reactions By Desorption Electrospray Mass Spectrometry
  • Two-Cycle Sensing In A Two-Terminal Memory Array Having Leakage Current
  • Memory Element With A Reactive Metal Layer
  • Metastable Ceramic Fuel Cell And Method Of Making The Same
  • Memory Element With A Reactive Metal Layer
  • Scaleable Memory Systems Using Third Dimension Memory
  • Mixed Anion Materials And Compounds For Novel Proton Conducting Membranes
  • Cyclopropenium Polymers And Methods For Making The Same
  • Methods And Devices For Generating Electricity From A Fuel And An Oxidant Using A Capacitor
  • Fast Data Access Through Page Manipulation
  • Cross Point Memory Array With Fast Access Time
  • Multi-Layered Conductive Metal Oxide Structures And Methods For Facilitating Enhanced Performance Characteristics Of Two-Terminal Memory Cells
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35104620

    DOI

    http://dx.doi.org/10.1038/35104620

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021573346

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11713541


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials, Centre for Ion Conducting Ceramics, Imperial College, SW7 2BP, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Materials, Centre for Ion Conducting Ceramics, Imperial College, SW7 2BP, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steele", 
            "givenName": "Brian C. H.", 
            "id": "sg:person.011543604767.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011543604767.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fachgebiet Energietechnik, Universit\u00e4t Duisburg, Lotharstr. 1-21, 47057, Duisburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110, Freiburg, Germany", 
                "Fachgebiet Energietechnik, Universit\u00e4t Duisburg, Lotharstr. 1-21, 47057, Duisburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heinzel", 
            "givenName": "Angelika", 
            "id": "sg:person.014504216175.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014504216175.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1004853019349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050861630", 
              "https://doi.org/10.1023/a:1004853019349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35073536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032441828", 
              "https://doi.org/10.1038/35073536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/23220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023229198", 
              "https://doi.org/10.1038/23220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1004881825710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042567447", 
              "https://doi.org/10.1023/a:1004881825710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/proc-393-151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067932499", 
              "https://doi.org/10.1557/proc-393-151"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-11", 
        "datePublishedReg": "2001-11-01", 
        "description": "Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/35104620", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6861", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "414"
          }
        ], 
        "keywords": [
          "fuel cell technology", 
          "alternative materials", 
          "fuel cell stack", 
          "innovative alternative materials", 
          "fuel cell prototype", 
          "electrical power market", 
          "electrical energy", 
          "fuel cells", 
          "low emissions", 
          "chemical energy", 
          "power market", 
          "commercialization aspects", 
          "high efficiency", 
          "materials", 
          "recent progress", 
          "energy", 
          "fuel", 
          "durability", 
          "technology", 
          "significant share", 
          "pollutants", 
          "important issue", 
          "stack", 
          "prototype", 
          "optimal choice", 
          "efficiency", 
          "emission", 
          "cost", 
          "issues", 
          "development", 
          "progress", 
          "cells", 
          "aspects", 
          "share", 
          "choice", 
          "market", 
          "inadequacy", 
          "search", 
          "years"
        ], 
        "name": "Materials for fuel-cell technologies", 
        "pagination": "345-352", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021573346"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35104620"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11713541"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35104620", 
          "https://app.dimensions.ai/details/publication/pub.1021573346"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_307.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/35104620"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35104620'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35104620'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35104620'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35104620'


     

    This table displays all metadata directly associated to this object as RDF triples.

    139 TRIPLES      21 PREDICATES      72 URIs      57 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35104620 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 schema:author N9074aef6170b463bbfeba038087be6f6
    6 schema:citation sg:pub.10.1023/a:1004853019349
    7 sg:pub.10.1023/a:1004881825710
    8 sg:pub.10.1038/23220
    9 sg:pub.10.1038/35073536
    10 sg:pub.10.1557/proc-393-151
    11 schema:datePublished 2001-11
    12 schema:datePublishedReg 2001-11-01
    13 schema:description Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials.
    14 schema:genre article
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N68bf8871124347c08f7194196cae8237
    17 N880be722b63f49dd9c927adcacf1e0fe
    18 sg:journal.1018957
    19 schema:keywords alternative materials
    20 aspects
    21 cells
    22 chemical energy
    23 choice
    24 commercialization aspects
    25 cost
    26 development
    27 durability
    28 efficiency
    29 electrical energy
    30 electrical power market
    31 emission
    32 energy
    33 fuel
    34 fuel cell prototype
    35 fuel cell stack
    36 fuel cell technology
    37 fuel cells
    38 high efficiency
    39 important issue
    40 inadequacy
    41 innovative alternative materials
    42 issues
    43 low emissions
    44 market
    45 materials
    46 optimal choice
    47 pollutants
    48 power market
    49 progress
    50 prototype
    51 recent progress
    52 search
    53 share
    54 significant share
    55 stack
    56 technology
    57 years
    58 schema:name Materials for fuel-cell technologies
    59 schema:pagination 345-352
    60 schema:productId N897711a75d7f45b4910744e3b4e32c84
    61 N9b4d6a1e04f945a485328f64f8d21e20
    62 Ne2472418ab504cb1884509f8e8fb6955
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021573346
    64 https://doi.org/10.1038/35104620
    65 schema:sdDatePublished 2022-08-04T16:52
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher N75c7beea6cd2480495ee432c50cb069d
    68 schema:url https://doi.org/10.1038/35104620
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N68bf8871124347c08f7194196cae8237 schema:issueNumber 6861
    73 rdf:type schema:PublicationIssue
    74 N75c7beea6cd2480495ee432c50cb069d schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 N880be722b63f49dd9c927adcacf1e0fe schema:volumeNumber 414
    77 rdf:type schema:PublicationVolume
    78 N897711a75d7f45b4910744e3b4e32c84 schema:name doi
    79 schema:value 10.1038/35104620
    80 rdf:type schema:PropertyValue
    81 N9074aef6170b463bbfeba038087be6f6 rdf:first sg:person.011543604767.42
    82 rdf:rest N94d87f40b80d4fb4951b7cbebac1b013
    83 N94d87f40b80d4fb4951b7cbebac1b013 rdf:first sg:person.014504216175.06
    84 rdf:rest rdf:nil
    85 N9b4d6a1e04f945a485328f64f8d21e20 schema:name pubmed_id
    86 schema:value 11713541
    87 rdf:type schema:PropertyValue
    88 Ne2472418ab504cb1884509f8e8fb6955 schema:name dimensions_id
    89 schema:value pub.1021573346
    90 rdf:type schema:PropertyValue
    91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Chemical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Physical Chemistry (incl. Structural)
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Engineering
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Materials Engineering
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1018957 schema:issn 0028-0836
    104 1476-4687
    105 schema:name Nature
    106 schema:publisher Springer Nature
    107 rdf:type schema:Periodical
    108 sg:person.011543604767.42 schema:affiliation grid-institutes:grid.7445.2
    109 schema:familyName Steele
    110 schema:givenName Brian C. H.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011543604767.42
    112 rdf:type schema:Person
    113 sg:person.014504216175.06 schema:affiliation grid-institutes:grid.5718.b
    114 schema:familyName Heinzel
    115 schema:givenName Angelika
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014504216175.06
    117 rdf:type schema:Person
    118 sg:pub.10.1023/a:1004853019349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050861630
    119 https://doi.org/10.1023/a:1004853019349
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1023/a:1004881825710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042567447
    122 https://doi.org/10.1023/a:1004881825710
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/23220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023229198
    125 https://doi.org/10.1038/23220
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/35073536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032441828
    128 https://doi.org/10.1038/35073536
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1557/proc-393-151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067932499
    131 https://doi.org/10.1557/proc-393-151
    132 rdf:type schema:CreativeWork
    133 grid-institutes:grid.5718.b schema:alternateName Fachgebiet Energietechnik, Universität Duisburg, Lotharstr. 1-21, 47057, Duisburg, Germany
    134 schema:name Fachgebiet Energietechnik, Universität Duisburg, Lotharstr. 1-21, 47057, Duisburg, Germany
    135 Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110, Freiburg, Germany
    136 rdf:type schema:Organization
    137 grid-institutes:grid.7445.2 schema:alternateName Department of Materials, Centre for Ion Conducting Ceramics, Imperial College, SW7 2BP, London, UK
    138 schema:name Department of Materials, Centre for Ion Conducting Ceramics, Imperial College, SW7 2BP, London, UK
    139 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...