The Sun's luminosity over a complete solar cycle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-05

AUTHORS

Richard C. Willson, Hugh S. Hudson

ABSTRACT

THE Active Cavity Radiometer Irradiance Monitor (ACRIM I), an instrument carried on NASA's Solar Maximum Mission satellite, measured the Sun's luminosity (total power outflow) from early 1980 to late 19891–5. Here we present the first account of the complete ACRIM I data set, and give evidence confirming our previous suggestion that solar luminosity varies with the 11-year solar cycle6. As previously reported, this slow variation closely follows statistical measures of the distribution of magnetic and photospheric features on the Sun's surface4–8. But there was an exception to this correlation in the form of a remarkable irradiance excess during 1980, at about the time of the sunspot maximum of solar cycle 21. The linkage, over a whole cycle, of luminosity variation to photospheric activity suggests the existence of an unknown physical mechanism other than the thermal diffusion model that explains luminosity deficits due to sunspots. Luminosity models connecting total irradiance to global indicators of solar activity, such as the equivalent width of the 1,083-nm helium line, are consistent with the gross features of the variability, but fail to account for the 1980 irradiance excess. More... »

PAGES

42-44

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/351042a0

DOI

http://dx.doi.org/10.1038/351042a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037928912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willson", 
        "givenName": "Richard C.", 
        "id": "sg:person.013300472677.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013300472677.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California at San Diego, 92093, La Jolla, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "University of California at San Diego, 92093, La Jolla, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hudson", 
        "givenName": "Hugh S.", 
        "id": "sg:person.01315154233.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315154233.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00226011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046350748", 
          "https://doi.org/10.1007/bf00226011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/332810a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043127848", 
          "https://doi.org/10.1038/332810a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/318449a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033260875", 
          "https://doi.org/10.1038/318449a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/305589a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022127055", 
          "https://doi.org/10.1038/305589a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00170984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025885211", 
          "https://doi.org/10.1007/bf00170984"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-05", 
    "datePublishedReg": "1991-05-01", 
    "description": "THE Active Cavity Radiometer Irradiance Monitor (ACRIM I), an instrument carried on NASA's Solar Maximum Mission satellite, measured the Sun's luminosity (total power outflow) from early 1980 to late 19891\u20135. Here we present the first account of the complete ACRIM I data set, and give evidence confirming our previous suggestion that solar luminosity varies with the 11-year solar cycle6. As previously reported, this slow variation closely follows statistical measures of the distribution of magnetic and photospheric features on the Sun's surface4\u20138. But there was an exception to this correlation in the form of a remarkable irradiance excess during 1980, at about the time of the sunspot maximum of solar cycle 21. The linkage, over a whole cycle, of luminosity variation to photospheric activity suggests the existence of an unknown physical mechanism other than the thermal diffusion model that explains luminosity deficits due to sunspots. Luminosity models connecting total irradiance to global indicators of solar activity, such as the equivalent width of the 1,083-nm helium line, are consistent with the gross features of the variability, but fail to account for the 1980 irradiance excess.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/351042a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6321", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "351"
      }
    ], 
    "keywords": [
      "Solar Maximum Mission satellite", 
      "NASA's Solar Maximum Mission satellite", 
      "Sun's luminosity", 
      "active cavity radiometer irradiance monitor", 
      "complete solar cycle", 
      "unknown physical mechanism", 
      "solar cycle 21", 
      "luminosity model", 
      "helium lines", 
      "equivalent width", 
      "photospheric activity", 
      "luminosity", 
      "luminosity variations", 
      "solar activity", 
      "photospheric features", 
      "solar cycle", 
      "cycle 21", 
      "solar luminosity", 
      "thermal diffusion model", 
      "Mission satellite", 
      "physical mechanisms", 
      "sunspot maximum", 
      "gross features", 
      "total irradiance", 
      "I data", 
      "slow variation", 
      "sunspots", 
      "diffusion model", 
      "satellite", 
      "statistical measures", 
      "width", 
      "irradiance", 
      "excess", 
      "previous suggestions", 
      "maximum", 
      "instrument", 
      "monitor", 
      "existence", 
      "distribution", 
      "model", 
      "variation", 
      "features", 
      "lines", 
      "account", 
      "whole cycle", 
      "correlation", 
      "time", 
      "mechanism", 
      "global indicators", 
      "data", 
      "form", 
      "first account", 
      "cycle", 
      "evidence", 
      "measures", 
      "variability", 
      "suggestions", 
      "exception", 
      "indicators", 
      "activity", 
      "linkage", 
      "deficits"
    ], 
    "name": "The Sun's luminosity over a complete solar cycle", 
    "pagination": "42-44", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037928912"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/351042a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/351042a0", 
      "https://app.dimensions.ai/details/publication/pub.1037928912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_238.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/351042a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/351042a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/351042a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/351042a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/351042a0'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      92 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/351042a0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nadf3d72e201b49af8e8cf344d0d27c0d
4 schema:citation sg:pub.10.1007/bf00170984
5 sg:pub.10.1007/bf00226011
6 sg:pub.10.1038/305589a0
7 sg:pub.10.1038/318449a0
8 sg:pub.10.1038/332810a0
9 schema:datePublished 1991-05
10 schema:datePublishedReg 1991-05-01
11 schema:description THE Active Cavity Radiometer Irradiance Monitor (ACRIM I), an instrument carried on NASA's Solar Maximum Mission satellite, measured the Sun's luminosity (total power outflow) from early 1980 to late 19891–5. Here we present the first account of the complete ACRIM I data set, and give evidence confirming our previous suggestion that solar luminosity varies with the 11-year solar cycle6. As previously reported, this slow variation closely follows statistical measures of the distribution of magnetic and photospheric features on the Sun's surface4–8. But there was an exception to this correlation in the form of a remarkable irradiance excess during 1980, at about the time of the sunspot maximum of solar cycle 21. The linkage, over a whole cycle, of luminosity variation to photospheric activity suggests the existence of an unknown physical mechanism other than the thermal diffusion model that explains luminosity deficits due to sunspots. Luminosity models connecting total irradiance to global indicators of solar activity, such as the equivalent width of the 1,083-nm helium line, are consistent with the gross features of the variability, but fail to account for the 1980 irradiance excess.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N56a344d70ded40759c4452ce8595ea4c
15 Nb744cfb51b5c468191dfa31de54d71c1
16 sg:journal.1018957
17 schema:keywords I data
18 Mission satellite
19 NASA's Solar Maximum Mission satellite
20 Solar Maximum Mission satellite
21 Sun's luminosity
22 account
23 active cavity radiometer irradiance monitor
24 activity
25 complete solar cycle
26 correlation
27 cycle
28 cycle 21
29 data
30 deficits
31 diffusion model
32 distribution
33 equivalent width
34 evidence
35 exception
36 excess
37 existence
38 features
39 first account
40 form
41 global indicators
42 gross features
43 helium lines
44 indicators
45 instrument
46 irradiance
47 lines
48 linkage
49 luminosity
50 luminosity model
51 luminosity variations
52 maximum
53 measures
54 mechanism
55 model
56 monitor
57 photospheric activity
58 photospheric features
59 physical mechanisms
60 previous suggestions
61 satellite
62 slow variation
63 solar activity
64 solar cycle
65 solar cycle 21
66 solar luminosity
67 statistical measures
68 suggestions
69 sunspot maximum
70 sunspots
71 thermal diffusion model
72 time
73 total irradiance
74 unknown physical mechanism
75 variability
76 variation
77 whole cycle
78 width
79 schema:name The Sun's luminosity over a complete solar cycle
80 schema:pagination 42-44
81 schema:productId Ne38ae74b870341a9bdbca24b1b8ee33a
82 Nf92c130840e6471f8d9c2e854df3a605
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037928912
84 https://doi.org/10.1038/351042a0
85 schema:sdDatePublished 2022-08-04T16:52
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Nb457f380d7ad4d61acf8826294c71af7
88 schema:url https://doi.org/10.1038/351042a0
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N56a344d70ded40759c4452ce8595ea4c schema:volumeNumber 351
93 rdf:type schema:PublicationVolume
94 N855e057db7244497b989b9326b505be5 rdf:first sg:person.01315154233.54
95 rdf:rest rdf:nil
96 Nadf3d72e201b49af8e8cf344d0d27c0d rdf:first sg:person.013300472677.21
97 rdf:rest N855e057db7244497b989b9326b505be5
98 Nb457f380d7ad4d61acf8826294c71af7 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nb744cfb51b5c468191dfa31de54d71c1 schema:issueNumber 6321
101 rdf:type schema:PublicationIssue
102 Ne38ae74b870341a9bdbca24b1b8ee33a schema:name doi
103 schema:value 10.1038/351042a0
104 rdf:type schema:PropertyValue
105 Nf92c130840e6471f8d9c2e854df3a605 schema:name dimensions_id
106 schema:value pub.1037928912
107 rdf:type schema:PropertyValue
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
112 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
113 rdf:type schema:DefinedTerm
114 sg:journal.1018957 schema:issn 0028-0836
115 1476-4687
116 schema:name Nature
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.01315154233.54 schema:affiliation grid-institutes:grid.266100.3
120 schema:familyName Hudson
121 schema:givenName Hugh S.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315154233.54
123 rdf:type schema:Person
124 sg:person.013300472677.21 schema:affiliation grid-institutes:grid.211367.0
125 schema:familyName Willson
126 schema:givenName Richard C.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013300472677.21
128 rdf:type schema:Person
129 sg:pub.10.1007/bf00170984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025885211
130 https://doi.org/10.1007/bf00170984
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00226011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046350748
133 https://doi.org/10.1007/bf00226011
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/305589a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022127055
136 https://doi.org/10.1038/305589a0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/318449a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033260875
139 https://doi.org/10.1038/318449a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/332810a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043127848
142 https://doi.org/10.1038/332810a0
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.211367.0 schema:alternateName Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, California, USA
145 schema:name Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, California, USA
146 rdf:type schema:Organization
147 grid-institutes:grid.266100.3 schema:alternateName University of California at San Diego, 92093, La Jolla, California, USA
148 schema:name University of California at San Diego, 92093, La Jolla, California, USA
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...