A single ion as a nanoscopic probe of an optical field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-11

AUTHORS

G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, H. Walther

ABSTRACT

In near-field imaging, resolution beyond the diffraction limit of optical microscopy is obtained by scanning the sampling region with a probe of subwavelength size. In recent experiments, single molecules were used as nanoscopic probes to attain a resolution of a few tens of nanometres. Positional control of the molecular probe was typically achieved by embedding it in a crystal attached to a substrate on a translation stage. However, the presence of the host crystal inevitably led to a disturbance of the light field that was to be measured. Here we report a near-field probe with atomic-scale resolution-a single calcium ion in a radio-frequency trap-that causes minimal perturbation of the optical field. We measure the three-dimensional spatial structure of an optical field with a spatial resolution as high as 60 nm (determined by the residual thermal motion of the trapped ion), and scan the modes of a low-loss optical cavity over a range of up to 100 microm. The precise positioning we achieve implies a deterministic control of the coupling between ion and field. At the same time, the field and the internal states of the ion are not affected by the trapping potential. Our set-up is therefore an ideal system for performing cavity quantum electrodynamics experiments with a single particle. More... »

PAGES

49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35102129

DOI

http://dx.doi.org/10.1038/35102129

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037067138

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11689937


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "*Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guth\u00f6hrlein", 
        "givenName": "G. R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "*Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keller", 
        "givenName": "M.", 
        "id": "sg:person.013774426175.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774426175.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Information and Communications Technology", 
          "id": "https://www.grid.ac/institutes/grid.28312.3a", 
          "name": [
            "\u2020Communications Research Laboratory, 588-2 Iwaoka, Nishi-ku, Kobe 651-24, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayasaka", 
        "givenName": "K.", 
        "id": "sg:person.011547500325.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547500325.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "*Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lange", 
        "givenName": "W.", 
        "id": "sg:person.015647422317.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015647422317.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "*Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther", 
        "givenName": "H.", 
        "id": "sg:person.016355234775.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/09500349708231869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000923431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35006006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003985382", 
          "https://doi.org/10.1038/35006006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35006006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003985382", 
          "https://doi.org/10.1038/35006006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35012545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010671700", 
          "https://doi.org/10.1038/35012545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35012545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010671700", 
          "https://doi.org/10.1038/35012545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35097017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029132554", 
          "https://doi.org/10.1038/35097017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35097017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029132554", 
          "https://doi.org/10.1038/35097017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029592404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029592404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2818.1999.00520.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033470935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500349708231861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041994036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(96)00621-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043193705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050235144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050235144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2818.2001.00795.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050700556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2818.2001.00865.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052410399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.94865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058135004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.262.5138.1422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062547321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5457.1447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1997-00150-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064234698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.24.000581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218543"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-11", 
    "datePublishedReg": "2001-11-01", 
    "description": "In near-field imaging, resolution beyond the diffraction limit of optical microscopy is obtained by scanning the sampling region with a probe of subwavelength size. In recent experiments, single molecules were used as nanoscopic probes to attain a resolution of a few tens of nanometres. Positional control of the molecular probe was typically achieved by embedding it in a crystal attached to a substrate on a translation stage. However, the presence of the host crystal inevitably led to a disturbance of the light field that was to be measured. Here we report a near-field probe with atomic-scale resolution-a single calcium ion in a radio-frequency trap-that causes minimal perturbation of the optical field. We measure the three-dimensional spatial structure of an optical field with a spatial resolution as high as 60 nm (determined by the residual thermal motion of the trapped ion), and scan the modes of a low-loss optical cavity over a range of up to 100 microm. The precise positioning we achieve implies a deterministic control of the coupling between ion and field. At the same time, the field and the internal states of the ion are not affected by the trapping potential. Our set-up is therefore an ideal system for performing cavity quantum electrodynamics experiments with a single particle.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35102129", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6859", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "414"
      }
    ], 
    "name": "A single ion as a nanoscopic probe of an optical field", 
    "pagination": "49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b0931f5dafc12fba1aa021557b2f5fb79eed45977cdcdff427eb9b0ca6515b5b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11689937"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35102129"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037067138"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35102129", 
      "https://app.dimensions.ai/details/publication/pub.1037067138"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54015_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35102129"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35102129'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35102129'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35102129'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35102129'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35102129 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N62c51a7d6f4b413f9c96fbd56e037f48
4 schema:citation sg:pub.10.1038/35006006
5 sg:pub.10.1038/35012545
6 sg:pub.10.1038/35097017
7 https://doi.org/10.1016/s0030-4018(96)00621-9
8 https://doi.org/10.1046/j.1365-2818.1999.00520.x
9 https://doi.org/10.1046/j.1365-2818.2001.00795.x
10 https://doi.org/10.1046/j.1365-2818.2001.00865.x
11 https://doi.org/10.1063/1.94865
12 https://doi.org/10.1080/09500349708231861
13 https://doi.org/10.1080/09500349708231869
14 https://doi.org/10.1103/physreva.60.439
15 https://doi.org/10.1103/physrevlett.58.203
16 https://doi.org/10.1103/physrevlett.75.3788
17 https://doi.org/10.1103/physrevlett.75.4011
18 https://doi.org/10.1103/physrevlett.76.1796
19 https://doi.org/10.1103/physrevlett.85.2392
20 https://doi.org/10.1103/physrevlett.85.4872
21 https://doi.org/10.1103/physrevlett.85.5547
22 https://doi.org/10.1126/science.262.5138.1422
23 https://doi.org/10.1126/science.287.5457.1447
24 https://doi.org/10.1209/epl/i1997-00150-y
25 https://doi.org/10.1364/ol.24.000581
26 schema:datePublished 2001-11
27 schema:datePublishedReg 2001-11-01
28 schema:description In near-field imaging, resolution beyond the diffraction limit of optical microscopy is obtained by scanning the sampling region with a probe of subwavelength size. In recent experiments, single molecules were used as nanoscopic probes to attain a resolution of a few tens of nanometres. Positional control of the molecular probe was typically achieved by embedding it in a crystal attached to a substrate on a translation stage. However, the presence of the host crystal inevitably led to a disturbance of the light field that was to be measured. Here we report a near-field probe with atomic-scale resolution-a single calcium ion in a radio-frequency trap-that causes minimal perturbation of the optical field. We measure the three-dimensional spatial structure of an optical field with a spatial resolution as high as 60 nm (determined by the residual thermal motion of the trapped ion), and scan the modes of a low-loss optical cavity over a range of up to 100 microm. The precise positioning we achieve implies a deterministic control of the coupling between ion and field. At the same time, the field and the internal states of the ion are not affected by the trapping potential. Our set-up is therefore an ideal system for performing cavity quantum electrodynamics experiments with a single particle.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Nbc8a074ff31b485d9b0dcc7e30b4d9c1
33 Nf076e927f55a4e13b3aec09c19d67ec5
34 sg:journal.1018957
35 schema:name A single ion as a nanoscopic probe of an optical field
36 schema:pagination 49
37 schema:productId N001f824b753b4ad29d52a5b6ec95637a
38 N19d9f0ec69c641759566a8ac6a655c1a
39 N1d10bebd096343daacc3e97d0d9e8e67
40 N88242e3c32004a8e9f22d978e40330a4
41 Na4146754a8c0416181f61a603a5ce3a2
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037067138
43 https://doi.org/10.1038/35102129
44 schema:sdDatePublished 2019-04-11T12:15
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N65acf836f5d04edda9627933cc414b05
47 schema:url https://www.nature.com/articles/35102129
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N001f824b753b4ad29d52a5b6ec95637a schema:name doi
52 schema:value 10.1038/35102129
53 rdf:type schema:PropertyValue
54 N19d9f0ec69c641759566a8ac6a655c1a schema:name nlm_unique_id
55 schema:value 0410462
56 rdf:type schema:PropertyValue
57 N1d10bebd096343daacc3e97d0d9e8e67 schema:name dimensions_id
58 schema:value pub.1037067138
59 rdf:type schema:PropertyValue
60 N301ecab0b279438ca9b9584f24112651 schema:name *Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
61 rdf:type schema:Organization
62 N62c51a7d6f4b413f9c96fbd56e037f48 rdf:first Nf2807b05e2554a36a9012fe3d1606e67
63 rdf:rest N8c93d312aee74d088e1ca2eddc7bdf25
64 N65acf836f5d04edda9627933cc414b05 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N77686f4d53334a1a800579a50c97291f schema:name *Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
67 rdf:type schema:Organization
68 N83296c87237440318ceecd0487e9560c rdf:first sg:person.011547500325.04
69 rdf:rest Nd581323ff4af4ef9867e166d81fb15ec
70 N88242e3c32004a8e9f22d978e40330a4 schema:name readcube_id
71 schema:value b0931f5dafc12fba1aa021557b2f5fb79eed45977cdcdff427eb9b0ca6515b5b
72 rdf:type schema:PropertyValue
73 N8c93d312aee74d088e1ca2eddc7bdf25 rdf:first sg:person.013774426175.16
74 rdf:rest N83296c87237440318ceecd0487e9560c
75 Na4146754a8c0416181f61a603a5ce3a2 schema:name pubmed_id
76 schema:value 11689937
77 rdf:type schema:PropertyValue
78 Nb0ac9bb406fe484ba8c2c49aeb3950bf schema:name *Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
79 rdf:type schema:Organization
80 Nb183d88a51bb4f01aabd4cc65fe68696 rdf:first sg:person.016355234775.61
81 rdf:rest rdf:nil
82 Nbc8a074ff31b485d9b0dcc7e30b4d9c1 schema:issueNumber 6859
83 rdf:type schema:PublicationIssue
84 Nc458785308244f6b8311d16f1f3af7ad schema:name *Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
85 rdf:type schema:Organization
86 Nd581323ff4af4ef9867e166d81fb15ec rdf:first sg:person.015647422317.67
87 rdf:rest Nb183d88a51bb4f01aabd4cc65fe68696
88 Nf076e927f55a4e13b3aec09c19d67ec5 schema:volumeNumber 414
89 rdf:type schema:PublicationVolume
90 Nf2807b05e2554a36a9012fe3d1606e67 schema:affiliation N77686f4d53334a1a800579a50c97291f
91 schema:familyName Guthöhrlein
92 schema:givenName G. R.
93 rdf:type schema:Person
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
98 schema:name Other Physical Sciences
99 rdf:type schema:DefinedTerm
100 sg:journal.1018957 schema:issn 0090-0028
101 1476-4687
102 schema:name Nature
103 rdf:type schema:Periodical
104 sg:person.011547500325.04 schema:affiliation https://www.grid.ac/institutes/grid.28312.3a
105 schema:familyName Hayasaka
106 schema:givenName K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547500325.04
108 rdf:type schema:Person
109 sg:person.013774426175.16 schema:affiliation Nb0ac9bb406fe484ba8c2c49aeb3950bf
110 schema:familyName Keller
111 schema:givenName M.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774426175.16
113 rdf:type schema:Person
114 sg:person.015647422317.67 schema:affiliation Nc458785308244f6b8311d16f1f3af7ad
115 schema:familyName Lange
116 schema:givenName W.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015647422317.67
118 rdf:type schema:Person
119 sg:person.016355234775.61 schema:affiliation N301ecab0b279438ca9b9584f24112651
120 schema:familyName Walther
121 schema:givenName H.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61
123 rdf:type schema:Person
124 sg:pub.10.1038/35006006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003985382
125 https://doi.org/10.1038/35006006
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/35012545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010671700
128 https://doi.org/10.1038/35012545
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/35097017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029132554
131 https://doi.org/10.1038/35097017
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0030-4018(96)00621-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043193705
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1046/j.1365-2818.1999.00520.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033470935
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1046/j.1365-2818.2001.00795.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050700556
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1046/j.1365-2818.2001.00865.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052410399
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.94865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058135004
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/09500349708231861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041994036
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/09500349708231869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000923431
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreva.60.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060495651
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.58.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794958
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.75.3788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812162
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.75.4011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812207
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.76.1796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812692
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.85.2392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821840
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.85.4872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050235144
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.85.5547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029592404
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1126/science.262.5138.1422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062547321
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1126/science.287.5457.1447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568514
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1209/epl/i1997-00150-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1064234698
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1364/ol.24.000581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218543
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.28312.3a schema:alternateName National Institute of Information and Communications Technology
172 schema:name †Communications Research Laboratory, 588-2 Iwaoka, Nishi-ku, Kobe 651-24, Japan
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...