Ion-beam sculpting at nanometre length scales View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-07

AUTHORS

Jiali Li, Derek Stein, Ciaran McMullan, Daniel Branton, Michael J. Aziz, Jene A. Golovchenko

ABSTRACT

Manipulating matter at the nanometre scale is important for many electronic, chemical and biological advances, but present solid-state fabrication methods do not reproducibly achieve dimensional control at the nanometre scale. Here we report a means of fashioning matter at these dimensions that uses low-energy ion beams and reveals surprising atomic transport phenomena that occur in a variety of materials and geometries. The method is implemented in a feedback-controlled sputtering system that provides fine control over ion beam exposure and sample temperature. We call the method "ion-beam sculpting", and apply it to the problem of fabricating a molecular-scale hole, or nanopore, in a thin insulating solid-state membrane. Such pores can serve to localize molecular-scale electrical junctions and switches and function as masks to create other small-scale structures. Nanopores also function as membrane channels in all living systems, where they serve as extremely sensitive electro-mechanical devices that regulate electric potential, ionic flow, and molecular transport across cellular membranes. We show that ion-beam sculpting can be used to fashion an analogous solid-state device: a robust electronic detector consisting of a single nanopore in a Si3N4 membrane, capable of registering single DNA molecules in aqueous solution. More... »

PAGES

166

Journal

TITLE

Nature

ISSUE

6843

VOLUME

412

Author Affiliations

Related Patents

  • Apparatus And Method For Making A Tensile Diaphragm With An Insert
  • Characterization Of Individual Polymer Molecules Based On Monomer-Interface Interactions
  • Adjustable Nanopore, Nanotome, And Nanotweezer
  • Systems And Methods For Controlling Position Of Charged Polymer Inside Nanopore
  • Gradient Structures Interfacing Microfluidics And Nanofluidics, Methods For Fabrication And Uses Thereof
  • Polynucleotide Mapping And Sequencing
  • Nanopore Device With Graphene Supported Artificial Lipid Membrane
  • Fabrication Of Tunneling Junction For Nanopore Dna Sequencing
  • Integrated Electrical And Optical Sensor For Biomolecule Analysis With Single Molecule Sensitivity
  • Systems And Methods For Controlling Temperature Of Small Volumes
  • Devices And Methods For Target Molecule Characterization
  • Nanonozzle Device Arrays: Their Preparation And Use For Macromolecular Analysis
  • Dna Sequencing Using Multiple Metal Layer Structure With Different Organic Coatings Forming Different Transient Bondings To Dna
  • Using A Field Effect Device For Identifying Translocating Charge-Tagged Molecules In A Nanopore Sequencing Device
  • High-Resolution Molecular Sensor
  • Methods And Apparatus For Characterizing Polynucleotides
  • High-Resolution Molecular Sensor
  • Electrochemical Detection Of Single Molecules Using Abiotic Nanopores Having Electrically Tunable Dimensions
  • Characterizing Stretched Polynucleotides In A Synthetic Nanopassage
  • Method For Forming A Nanostructure Penetrating A Layer
  • Dna Sequencing By Nanopore Using Modified Nucleotides
  • Study Of Polymer Molecules And Conformations With A Nanopore
  • Translocation And Nucleotide Reading Mechanisms For Sequencing Nanodevices
  • Devices And Methods For Analyzing Biomolecules And Probes Bound Thereto
  • Ultrathin Porous Nanoscale Membranes, Methods Of Making, And Uses Thereof
  • Differentiation Of Macromolecules And Analysis Of Their Internal Content In Solid-State Nanopore Devices
  • Method And Device For Identifying Nucleotide, And Method And Device For Determining Nucleotide Sequence Of Polynucleotide
  • Differentiation Of Macromolecules And Analysis Of Their Internal Content In Solid-State Nanopore Devices
  • Chemical Functionalization Of Solid-State Nanopores And Nanopore Arrays And Applications Thereof
  • Nanonozzle Device Arrays: Their Preparation And Use For Macromolecular Analysis
  • Fabrication Of Tunneling Junction For Nanopore Dna Sequencing
  • Apparatus And Method For Molecular Separation, Purification, And Sensing
  • Tagged-Fragment Map Assembly
  • Solid State Molecular Probe Device
  • Methods And Apparatus For Characterizing Polynucleotides
  • Study Of Polymer Molecules And Conformations With A Nanopore
  • Nanogap Device With Capped Nanowire Structures
  • Apparatus And Method For Molecular Separation, Purification, And Sensing
  • Nanochannel Electrode Devices
  • Forming An Electrode Having Reduced Corrosion And Water Decomposition On Surface Using A Custom Oxide Layer
  • Nanochannel Electrode Devices
  • Electrochemical Detection Of Single Molecules Using Abiotic Nanopores Having Electrically Tunable Dimensions
  • Integrated Sensor With Electrical And Optical Single Molecule Sensitivity
  • Detecting And Sorting Methylated Dna Using A Synthetic Nanopore
  • Characterization Of Individual Polymer Molecules Based On Monomer-Interface Interactions
  • Apparatus And Method For Threading A Biopolymer Through A Nanopore
  • Method For Forming A Nanostructure Penetrating A Layer
  • Apparatus And Method For Molecular Separation, Purification, And Sensing
  • Forming An Electrode Having Reduced Corrosion And Water Decomposition On Surface Using An Organic Protective Layer
  • Ultrathin Nanoscale Membranes, Methods Of Making, And Uses Thereof
  • Nanopored Silicon Nitride Chip For The Analysis Of Gene Expression Profiles
  • Addressable Nanopores And Micropores Including Methods For Making And Using Same
  • Methods Of Macromolecular Analysis Using Nanochannel Arrays
  • Nanopore Functionality Control
  • Apparatus And Method For Biopolymer Identification During Translocation Through A Nanopore
  • Control Of Solid State Dimensional Features
  • Cell Culture Devices Having Ultrathin Porous Membrane And Uses Thereof
  • Nano Transfer And Nanoreplication Using Deterministically Grown Sacrificial Nanotemplates
  • Nanopore Electrode, Nanopore Membrane, Methods Of Preparation And Surface Modification, And Use Thereof
  • Nanopore Based Sequencer
  • Electro-Diffusion Enhanced Bio-Molecule Charge Detection Using Electrostatic Interaction
  • Nanochannel Arrays And Their Preparation And Use For High Throughput Macromolecular Analysis
  • Battery With Hybrid Electrocatalysts
  • Gradient Structures Interfacing Microfluidics And Nanofluidics
  • Apparatus And Method For Molecular Separation, Purification, And Sensing
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Nanogap Device With Capped Nanowire Structures
  • Method And Apparatus For Forming A Nanoporous Membrane
  • Nanochannel Arrays And Their Preparation And Use For High Throughput Macromolecular Analysis
  • Nanotransfer And Nanoreplication Using Deterministically Grown Sacrificial Nanotemplates
  • Nanopore Electrode, Nanopore Membrane, Methods Of Preparation And Surface Modification, And Use Thereof
  • Methods And Systems For Evaluating The Length Of Elongated Elements
  • Nanofluidic Sorting System For Gene Synthesis And Pcr Reaction Products
  • Gradient Structures Interfacing Microfluidics And Nanofluidics, Methods For Fabrication And Uses Thereof
  • Control Of Solid State Dimensional Features
  • Apparatus And Method For Control Of Biopolymer Translocation Through A Nanopore
  • Pulsed Ion Beam Control Of Solid State Features
  • Chemical Functionalization Of Solid-State Nanopores And Nanopore Arrays And Applications Thereof
  • Controlled Fabrication Of Gaps In Electrically Conducting Structures
  • Methods And Apparatuses For Filtering Water Fluid By Screening Ionic Minerals
  • Nano-Fluidic Field Effective Device To Control Dna Transport Through The Same
  • Nanopore Biosensors For Detection Of Proteins And Nucleic Acids
  • Polynucleotide Mapping And Sequencing
  • Characterization Of Individual Polymer Molecules Based On Monomer-Interface Interactions
  • Electro-Diffusion Enhanced Bio-Molecule Charge Detection Using Electrostatic Interaction
  • Chemical Functionalization Of Solid-State Nanopores And Nanopore Arrays And Applications Thereof
  • Biopolymer Sequencing By Hybridization Of Probes To Form Ternary Complexes And Variable Range Alignment
  • Nanochannel Arrays And Their Preparation And Use For High Throughput Macromolecular Analysis
  • Methods Of Macromolecular Analysis Using Nanochannel Arrays
  • Manufacturable Sub-3 Nanometer Palladium Gap Devices For Fixed Electrode Tunneling Recognition
  • Phononic Crystal Devices
  • Dna Sequencing And Amplification Systems Using Nanoscale Field Effect Sensor Arrays
  • Electrochemical Detection Of Single Molecules Using Abiotic Nanopores Having Electrically Tunable Dimensions
  • Growth Of Low Dislocation Density Group-Iii Nitrides And Related Thin-Film Structures
  • Study Of Polymer Molecules And Conformations With A Nanopore
  • Solid State Device
  • Electrochemical Detection Of Single Molecules Using Abiotic Nanopores Having Electrically Tunable Dimensions
  • Electro-Diffusion Enhanced Bio-Molecule Charge Detection Using Electrostatic Interaction
  • Nanochannel Arrays And Their Preparation And Use For High Throughput Macromolecular Analysis
  • Method And Apparatus For Controlled Manufacturing Of Nanometer-Scale Apertures
  • Method And Device For The Controlled Production Of Openings On A Nanometer Scale.
  • Methods And Apparatus For Characterizing Polynucleotides
  • Manufacturable Sub-3 Nanometer Palladium Gap Devices For Fixed Electrode Tunneling Recognition
  • Methods And Devices For Single-Molecule Whole Genome Analysis
  • Methods Of Macromolecular Analysis Using Nanochannel Arrays
  • Translocation And Nucleotide Reading Mechanisms For Sequencing Nanodevices
  • Systems And Methods For Controlling Temperature Of Small Volumes
  • Ultrathin Porous Nanoscale Membranes, Methods Of Making, And Uses Thereof
  • Graphene Supported Artificial Membranes And Uses Thereof
  • Electro-Diffusion Enhanced Bio-Molecule Charge Detection Using Electrostatic Interaction
  • Label Free Detection Of Nucleic Acid Amplification
  • Dna Sequencing Using Multiple Metal Layer Structure With Different Organic Coatings Forming Different Transient Bondings To Dna
  • Chip-Scale Phonon-Based Quantum Device
  • Apparatus And Method For Making A Low Capacitance Artificial Nanopore
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35084037

    DOI

    http://dx.doi.org/10.1038/35084037

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045265151

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11449268


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biosensing Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Filtration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membranes, Artificial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microchemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Miniaturization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Chemical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silicon Compounds", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "*Department of Physics,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Jiali", 
            "id": "sg:person.0637746660.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637746660.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "\u2020Division of Engineering and Applied Sciences, and"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stein", 
            "givenName": "Derek", 
            "id": "sg:person.01261436250.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261436250.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "\u2021Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McMullan", 
            "givenName": "Ciaran", 
            "id": "sg:person.01141202774.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141202774.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "\u2021Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Branton", 
            "givenName": "Daniel", 
            "id": "sg:person.01073115173.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073115173.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "\u2020Division of Engineering and Applied Sciences, and"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aziz", 
            "givenName": "Michael J.", 
            "id": "sg:person.01172732633.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172732633.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "*Department of Physics,", 
                "\u2020Division of Engineering and Applied Sciences, and"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Golovchenko", 
            "givenName": "Jene A.", 
            "id": "sg:person.01017531221.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017531221.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/370279a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003952550", 
              "https://doi.org/10.1038/370279a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35023233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006890783", 
              "https://doi.org/10.1038/35023233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35023233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006890783", 
              "https://doi.org/10.1038/35023233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-583x(90)90178-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014383886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-583x(90)90178-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014383886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00656997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014806333", 
              "https://doi.org/10.1007/bf00656997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00656997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014806333", 
              "https://doi.org/10.1007/bf00656997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.24.13770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016336761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/19491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027551279", 
              "https://doi.org/10.1038/19491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/19491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027551279", 
              "https://doi.org/10.1038/19491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(99)77153-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030222196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1096-9918(199711)25:12<952::aid-sia333>3.0.co;2-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032887752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002320001026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037333164", 
              "https://doi.org/10.1007/s002320001026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.97.3.1079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041054957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35046000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041220065", 
              "https://doi.org/10.1038/35046000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35046000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041220065", 
              "https://doi.org/10.1038/35046000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1749-6632.1998.tb09868.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043842755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1749-6632.1998.tb09868.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043842755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.102001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057649578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.120195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057684376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.124777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057688907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.357748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057978053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.373624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058007998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.3241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060810838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.3241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060810838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.2330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.2330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.582127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062192174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.277.5330.1242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062557817"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-07", 
        "datePublishedReg": "2001-07-01", 
        "description": "Manipulating matter at the nanometre scale is important for many electronic, chemical and biological advances, but present solid-state fabrication methods do not reproducibly achieve dimensional control at the nanometre scale. Here we report a means of fashioning matter at these dimensions that uses low-energy ion beams and reveals surprising atomic transport phenomena that occur in a variety of materials and geometries. The method is implemented in a feedback-controlled sputtering system that provides fine control over ion beam exposure and sample temperature. We call the method \"ion-beam sculpting\", and apply it to the problem of fabricating a molecular-scale hole, or nanopore, in a thin insulating solid-state membrane. Such pores can serve to localize molecular-scale electrical junctions and switches and function as masks to create other small-scale structures. Nanopores also function as membrane channels in all living systems, where they serve as extremely sensitive electro-mechanical devices that regulate electric potential, ionic flow, and molecular transport across cellular membranes. We show that ion-beam sculpting can be used to fashion an analogous solid-state device: a robust electronic detector consisting of a single nanopore in a Si3N4 membrane, capable of registering single DNA molecules in aqueous solution.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/35084037", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6843", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "412"
          }
        ], 
        "name": "Ion-beam sculpting at nanometre length scales", 
        "pagination": "166", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d79d5d2f98584515f734d1ae4a2cfbc98ff04c755e6c7398a604e7ee0c180a56"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11449268"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35084037"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045265151"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35084037", 
          "https://app.dimensions.ai/details/publication/pub.1045265151"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87078_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/35084037"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35084037'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35084037'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35084037'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35084037'


     

    This table displays all metadata directly associated to this object as RDF triples.

    218 TRIPLES      21 PREDICATES      59 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35084037 schema:about N232790a9602b46ad91851f40f83f65b5
    2 N25acc024e2134280bce6a72f8c859db6
    3 N5af3c9b3cb4d4e0e993a6df6796ff86b
    4 N60286f34ee694136a2b52032aefc06fe
    5 N641640175fee4746af8f94c3da05cc10
    6 N8a7d80409a2d420b938e9a6fd369af2d
    7 N9793ca0487bd4dc78ba159aa135c8906
    8 Na2578d3b27d54c5db2947927da4fc5d2
    9 Nfc4e6c7cb0564049814531f5411b3c04
    10 anzsrc-for:02
    11 anzsrc-for:0299
    12 schema:author Nab14e57bf50b4e54a676e858f3420f41
    13 schema:citation sg:pub.10.1007/bf00656997
    14 sg:pub.10.1007/s002320001026
    15 sg:pub.10.1038/19491
    16 sg:pub.10.1038/35023233
    17 sg:pub.10.1038/35046000
    18 sg:pub.10.1038/370279a0
    19 https://doi.org/10.1002/(sici)1096-9918(199711)25:12<952::aid-sia333>3.0.co;2-f
    20 https://doi.org/10.1016/0168-583x(90)90178-w
    21 https://doi.org/10.1016/s0006-3495(99)77153-5
    22 https://doi.org/10.1063/1.102001
    23 https://doi.org/10.1063/1.120195
    24 https://doi.org/10.1063/1.124777
    25 https://doi.org/10.1063/1.357748
    26 https://doi.org/10.1063/1.373624
    27 https://doi.org/10.1073/pnas.93.24.13770
    28 https://doi.org/10.1073/pnas.97.3.1079
    29 https://doi.org/10.1103/physrevlett.74.3241
    30 https://doi.org/10.1103/physrevlett.82.2330
    31 https://doi.org/10.1111/j.1749-6632.1998.tb09868.x
    32 https://doi.org/10.1116/1.582127
    33 https://doi.org/10.1126/science.277.5330.1242
    34 schema:datePublished 2001-07
    35 schema:datePublishedReg 2001-07-01
    36 schema:description Manipulating matter at the nanometre scale is important for many electronic, chemical and biological advances, but present solid-state fabrication methods do not reproducibly achieve dimensional control at the nanometre scale. Here we report a means of fashioning matter at these dimensions that uses low-energy ion beams and reveals surprising atomic transport phenomena that occur in a variety of materials and geometries. The method is implemented in a feedback-controlled sputtering system that provides fine control over ion beam exposure and sample temperature. We call the method "ion-beam sculpting", and apply it to the problem of fabricating a molecular-scale hole, or nanopore, in a thin insulating solid-state membrane. Such pores can serve to localize molecular-scale electrical junctions and switches and function as masks to create other small-scale structures. Nanopores also function as membrane channels in all living systems, where they serve as extremely sensitive electro-mechanical devices that regulate electric potential, ionic flow, and molecular transport across cellular membranes. We show that ion-beam sculpting can be used to fashion an analogous solid-state device: a robust electronic detector consisting of a single nanopore in a Si3N4 membrane, capable of registering single DNA molecules in aqueous solution.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N06eb8b1bfed24cee863c6e49e7bc8266
    41 N996d262cd1db429eb20034f6406e1ec8
    42 sg:journal.1018957
    43 schema:name Ion-beam sculpting at nanometre length scales
    44 schema:pagination 166
    45 schema:productId N07d2a4a6c87c41118b1a4ca3084849e8
    46 N8baab65791754b198ded01c2271a366d
    47 Nb0932ff348494ef6a66cdbabc81d539b
    48 Nb1de283fcee74d529e710c2a234642bf
    49 Ne0fe47fb5a0d4e989efabfcae5a0d0e3
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265151
    51 https://doi.org/10.1038/35084037
    52 schema:sdDatePublished 2019-04-11T12:21
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N5351bf43b3bf48179a8840af798949a3
    55 schema:url https://www.nature.com/articles/35084037
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N06eb8b1bfed24cee863c6e49e7bc8266 schema:issueNumber 6843
    60 rdf:type schema:PublicationIssue
    61 N07d2a4a6c87c41118b1a4ca3084849e8 schema:name nlm_unique_id
    62 schema:value 0410462
    63 rdf:type schema:PropertyValue
    64 N0b6817f2499f4ac9af041f9dd23df2da rdf:first sg:person.01073115173.02
    65 rdf:rest N0ca4c3bcde384474846425cb44767a48
    66 N0ca4c3bcde384474846425cb44767a48 rdf:first sg:person.01172732633.23
    67 rdf:rest N37e46e68d536459f8086fb2ef9770877
    68 N232790a9602b46ad91851f40f83f65b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Miniaturization
    70 rdf:type schema:DefinedTerm
    71 N25acc024e2134280bce6a72f8c859db6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Membranes, Artificial
    73 rdf:type schema:DefinedTerm
    74 N37e46e68d536459f8086fb2ef9770877 rdf:first sg:person.01017531221.31
    75 rdf:rest rdf:nil
    76 N3db38b60f2cb41fbb8702095befbc54b schema:name *Department of Physics,
    77 rdf:type schema:Organization
    78 N5351bf43b3bf48179a8840af798949a3 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N5af3c9b3cb4d4e0e993a6df6796ff86b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Models, Chemical
    82 rdf:type schema:DefinedTerm
    83 N60286f34ee694136a2b52032aefc06fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Microchemistry
    85 rdf:type schema:DefinedTerm
    86 N641640175fee4746af8f94c3da05cc10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Ions
    88 rdf:type schema:DefinedTerm
    89 N847b2dc06be64c0d97d546ec4eb5ae94 rdf:first sg:person.01261436250.91
    90 rdf:rest Ne0c0d7111d114bc1947ffbeef4135dd3
    91 N8a7d80409a2d420b938e9a6fd369af2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Biosensing Techniques
    93 rdf:type schema:DefinedTerm
    94 N8baab65791754b198ded01c2271a366d schema:name pubmed_id
    95 schema:value 11449268
    96 rdf:type schema:PropertyValue
    97 N9793ca0487bd4dc78ba159aa135c8906 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Filtration
    99 rdf:type schema:DefinedTerm
    100 N996d262cd1db429eb20034f6406e1ec8 schema:volumeNumber 412
    101 rdf:type schema:PublicationVolume
    102 Na2578d3b27d54c5db2947927da4fc5d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name DNA
    104 rdf:type schema:DefinedTerm
    105 Nab14e57bf50b4e54a676e858f3420f41 rdf:first sg:person.0637746660.11
    106 rdf:rest N847b2dc06be64c0d97d546ec4eb5ae94
    107 Nb0932ff348494ef6a66cdbabc81d539b schema:name doi
    108 schema:value 10.1038/35084037
    109 rdf:type schema:PropertyValue
    110 Nb1de283fcee74d529e710c2a234642bf schema:name readcube_id
    111 schema:value d79d5d2f98584515f734d1ae4a2cfbc98ff04c755e6c7398a604e7ee0c180a56
    112 rdf:type schema:PropertyValue
    113 Nb728cd297c61480a86738522c2241714 schema:name *Department of Physics,
    114 †Division of Engineering and Applied Sciences, and
    115 rdf:type schema:Organization
    116 Ndcdd764dada744b3ac171f603b285fd4 schema:name †Division of Engineering and Applied Sciences, and
    117 rdf:type schema:Organization
    118 Ne0c0d7111d114bc1947ffbeef4135dd3 rdf:first sg:person.01141202774.23
    119 rdf:rest N0b6817f2499f4ac9af041f9dd23df2da
    120 Ne0fe47fb5a0d4e989efabfcae5a0d0e3 schema:name dimensions_id
    121 schema:value pub.1045265151
    122 rdf:type schema:PropertyValue
    123 Nf497dc56d61e4eabaa42dadee7e29687 schema:name †Division of Engineering and Applied Sciences, and
    124 rdf:type schema:Organization
    125 Nfc4e6c7cb0564049814531f5411b3c04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Silicon Compounds
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Physical Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Other Physical Sciences
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1018957 schema:issn 0090-0028
    135 1476-4687
    136 schema:name Nature
    137 rdf:type schema:Periodical
    138 sg:person.01017531221.31 schema:affiliation Nb728cd297c61480a86738522c2241714
    139 schema:familyName Golovchenko
    140 schema:givenName Jene A.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017531221.31
    142 rdf:type schema:Person
    143 sg:person.01073115173.02 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    144 schema:familyName Branton
    145 schema:givenName Daniel
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073115173.02
    147 rdf:type schema:Person
    148 sg:person.01141202774.23 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    149 schema:familyName McMullan
    150 schema:givenName Ciaran
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141202774.23
    152 rdf:type schema:Person
    153 sg:person.01172732633.23 schema:affiliation Ndcdd764dada744b3ac171f603b285fd4
    154 schema:familyName Aziz
    155 schema:givenName Michael J.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172732633.23
    157 rdf:type schema:Person
    158 sg:person.01261436250.91 schema:affiliation Nf497dc56d61e4eabaa42dadee7e29687
    159 schema:familyName Stein
    160 schema:givenName Derek
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261436250.91
    162 rdf:type schema:Person
    163 sg:person.0637746660.11 schema:affiliation N3db38b60f2cb41fbb8702095befbc54b
    164 schema:familyName Li
    165 schema:givenName Jiali
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637746660.11
    167 rdf:type schema:Person
    168 sg:pub.10.1007/bf00656997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014806333
    169 https://doi.org/10.1007/bf00656997
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s002320001026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037333164
    172 https://doi.org/10.1007/s002320001026
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/19491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027551279
    175 https://doi.org/10.1038/19491
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/35023233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890783
    178 https://doi.org/10.1038/35023233
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/35046000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041220065
    181 https://doi.org/10.1038/35046000
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/370279a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003952550
    184 https://doi.org/10.1038/370279a0
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1002/(sici)1096-9918(199711)25:12<952::aid-sia333>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1032887752
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/0168-583x(90)90178-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1014383886
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/s0006-3495(99)77153-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030222196
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1063/1.102001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057649578
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1063/1.120195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057684376
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1063/1.124777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057688907
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1063/1.357748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057978053
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1063/1.373624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058007998
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1073/pnas.93.24.13770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016336761
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1073/pnas.97.3.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041054957
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1103/physrevlett.74.3241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810838
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1103/physrevlett.82.2330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819132
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1111/j.1749-6632.1998.tb09868.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043842755
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1116/1.582127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062192174
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1126/science.277.5330.1242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557817
    215 rdf:type schema:CreativeWork
    216 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    217 schema:name ‡Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
    218 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...