Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-06-21

AUTHORS

E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, J. C. Davis

ABSTRACT

Magnetic interactions and magnetic impurities are destructive to superconductivity in conventional superconductors. By contrast, in some unconventional macroscopic quantum systems (such as superfluid 3He and superconducting UGe2), the superconductivity (or superfluidity) is actually mediated by magnetic interactions. A magnetic mechanism has also been proposed for high-temperature superconductivity. Within this context, the fact that magnetic Ni impurity atoms have a weaker effect on superconductivity than non-magnetic Zn atoms in the high-Tc superconductors has been put forward as evidence supporting a magnetic mechanism. Here we use scanning tunnelling microscopy to determine directly the influence of individual Ni atoms on the local electronic structure of Bi2Sr2CaCu2O8+delta. At each Ni site we observe two d-wave impurity states of apparently opposite spin polarization, whose existence indicates that Ni retains a magnetic moment in the superconducting state. However, analysis of the impurity-state energies shows that quasiparticle scattering at Ni is predominantly non-magnetic. Furthermore, we show that the superconducting energy gap and correlations are unimpaired at Ni. This is in strong contrast to the effects of non-magnetic Zn impurities, which locally destroy superconductivity. These results are consistent with predictions for impurity atom phenomena derived from a magnetic mechanism. More... »

PAGES

920

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35082019

DOI

http://dx.doi.org/10.1038/35082019

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040923045

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11418850


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "*Department of Physics, University of California, Berkeley, California 94720, USA", 
            "\u2020National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hudson", 
        "givenName": "E. W.", 
        "id": "sg:person.01101626457.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101626457.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "*Department of Physics, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "K. M.", 
        "id": "sg:person.0751542607.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751542607.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "*Department of Physics, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Madhavan", 
        "givenName": "V.", 
        "id": "sg:person.0633040120.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633040120.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "*Department of Physics, University of California, Berkeley, California 94720, USA", 
            "\u2021Department of Physics, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "S. H.", 
        "id": "sg:person.011475355401.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475355401.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "\u00a7Department of Superconductivity, University of Tokyo, Yayoi, 2-11-16 Bunkyo-ku, Tokyo 113-8656, Japan", 
            "\u2016Department of Applied Physics, Stanford University, Stanford, California, 94205-4060, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eisaki", 
        "givenName": "H.", 
        "id": "sg:person.0760631671.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760631671.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "\u00a7Department of Superconductivity, University of Tokyo, Yayoi, 2-11-16 Bunkyo-ku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uchida", 
        "givenName": "S.", 
        "id": "sg:person.015174570477.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174570477.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "*Department of Physics, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davis", 
        "givenName": "J. C.", 
        "id": "sg:person.01127036513.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127036513.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.86.4116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001887039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.4116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001887039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1098(97)00112-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004139626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009217125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009217125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.097003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014765909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.097003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014765909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.15547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017836307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.15547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017836307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021538480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021538480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022974909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022974909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(94)92023-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026210381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(94)92023-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026210381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(97)00253-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028068714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030515955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030515955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.r14920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032890163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.r14920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032890163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033548326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033548326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.12648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036025769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.12648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036025769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038290150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038290150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046657054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046657054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048431583", 
          "https://doi.org/10.1038/35001534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048431583", 
          "https://doi.org/10.1038/35001534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049164650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049164650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049754410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049754410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.4112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.4112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.14803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.14803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.4261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.4261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.4051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.4051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.6201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.6201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.4319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.4319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.2304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.2304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5307.1767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.59.2905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063111786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.62.2803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063113908"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-06-21", 
    "datePublishedReg": "2001-06-21", 
    "description": "Magnetic interactions and magnetic impurities are destructive to superconductivity in conventional superconductors. By contrast, in some unconventional macroscopic quantum systems (such as superfluid 3He and superconducting UGe2), the superconductivity (or superfluidity) is actually mediated by magnetic interactions. A magnetic mechanism has also been proposed for high-temperature superconductivity. Within this context, the fact that magnetic Ni impurity atoms have a weaker effect on superconductivity than non-magnetic Zn atoms in the high-Tc superconductors has been put forward as evidence supporting a magnetic mechanism. Here we use scanning tunnelling microscopy to determine directly the influence of individual Ni atoms on the local electronic structure of Bi2Sr2CaCu2O8+delta. At each Ni site we observe two d-wave impurity states of apparently opposite spin polarization, whose existence indicates that Ni retains a magnetic moment in the superconducting state. However, analysis of the impurity-state energies shows that quasiparticle scattering at Ni is predominantly non-magnetic. Furthermore, we show that the superconducting energy gap and correlations are unimpaired at Ni. This is in strong contrast to the effects of non-magnetic Zn impurities, which locally destroy superconductivity. These results are consistent with predictions for impurity atom phenomena derived from a magnetic mechanism.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35082019", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6840", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "411"
      }
    ], 
    "name": "Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+\u03b4", 
    "pagination": "920", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c2f19f7a39e28b9b4021bd2b6768841a6ba695e72f61a7b67327aac9af6a4f10"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11418850"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35082019"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040923045"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35082019", 
      "https://app.dimensions.ai/details/publication/pub.1040923045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000442.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35082019"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35082019'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35082019'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35082019'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35082019'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      59 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35082019 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N1b6974aa12b043f89a6a8b31ada79522
4 schema:citation sg:pub.10.1038/35001534
5 https://doi.org/10.1016/0921-4534(94)92023-0
6 https://doi.org/10.1016/s0038-1098(97)00112-9
7 https://doi.org/10.1016/s0921-4534(97)00253-0
8 https://doi.org/10.1103/physrevb.41.4112
9 https://doi.org/10.1103/physrevb.46.14803
10 https://doi.org/10.1103/physrevb.49.4261
11 https://doi.org/10.1103/physrevb.50.4051
12 https://doi.org/10.1103/physrevb.51.15547
13 https://doi.org/10.1103/physrevb.55.12648
14 https://doi.org/10.1103/physrevb.56.6201
15 https://doi.org/10.1103/physrevb.61.4319
16 https://doi.org/10.1103/physrevb.61.r14920
17 https://doi.org/10.1103/physrevlett.62.961
18 https://doi.org/10.1103/physrevlett.72.3100
19 https://doi.org/10.1103/physrevlett.77.1841
20 https://doi.org/10.1103/physrevlett.77.2304
21 https://doi.org/10.1103/physrevlett.78.3761
22 https://doi.org/10.1103/physrevlett.80.4546
23 https://doi.org/10.1103/physrevlett.83.176
24 https://doi.org/10.1103/physrevlett.83.4381
25 https://doi.org/10.1103/physrevlett.84.3165
26 https://doi.org/10.1103/physrevlett.84.3422
27 https://doi.org/10.1103/physrevlett.84.5900
28 https://doi.org/10.1103/physrevlett.85.2172
29 https://doi.org/10.1103/physrevlett.86.4116
30 https://doi.org/10.1103/physrevlett.86.704
31 https://doi.org/10.1103/physrevlett.88.097003
32 https://doi.org/10.1126/science.275.5307.1767
33 https://doi.org/10.1143/jpsj.59.2905
34 https://doi.org/10.1143/jpsj.62.2803
35 schema:datePublished 2001-06-21
36 schema:datePublishedReg 2001-06-21
37 schema:description Magnetic interactions and magnetic impurities are destructive to superconductivity in conventional superconductors. By contrast, in some unconventional macroscopic quantum systems (such as superfluid 3He and superconducting UGe2), the superconductivity (or superfluidity) is actually mediated by magnetic interactions. A magnetic mechanism has also been proposed for high-temperature superconductivity. Within this context, the fact that magnetic Ni impurity atoms have a weaker effect on superconductivity than non-magnetic Zn atoms in the high-Tc superconductors has been put forward as evidence supporting a magnetic mechanism. Here we use scanning tunnelling microscopy to determine directly the influence of individual Ni atoms on the local electronic structure of Bi2Sr2CaCu2O8+delta. At each Ni site we observe two d-wave impurity states of apparently opposite spin polarization, whose existence indicates that Ni retains a magnetic moment in the superconducting state. However, analysis of the impurity-state energies shows that quasiparticle scattering at Ni is predominantly non-magnetic. Furthermore, we show that the superconducting energy gap and correlations are unimpaired at Ni. This is in strong contrast to the effects of non-magnetic Zn impurities, which locally destroy superconductivity. These results are consistent with predictions for impurity atom phenomena derived from a magnetic mechanism.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N77c65d1b8ffb439783fadc8321301243
42 Nac0c0e04eec84d64800602ec3a4ae488
43 sg:journal.1018957
44 schema:name Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ
45 schema:pagination 920
46 schema:productId N166b807b698d4877a5154b326336b320
47 N42923745e6b54e3bb47dffd4b2c95bdf
48 N9c4522e3bfd847baae7469f822c79253
49 Nb4e580a750064c928e13501a8e08c795
50 Nf8064deec3484c9c9ac84c5f4450e6b8
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040923045
52 https://doi.org/10.1038/35082019
53 schema:sdDatePublished 2019-04-10T15:40
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N8c973c960db744e1b1ad1c499e7140c3
56 schema:url https://www.nature.com/articles/35082019
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N166b807b698d4877a5154b326336b320 schema:name pubmed_id
61 schema:value 11418850
62 rdf:type schema:PropertyValue
63 N1931ae896a594be8849614a42333831b rdf:first sg:person.015174570477.93
64 rdf:rest N45fd0aeb03054c92874491047c9ef6cf
65 N1b6974aa12b043f89a6a8b31ada79522 rdf:first sg:person.01101626457.33
66 rdf:rest N4f74113f8c6142498ec7a23c90090160
67 N42923745e6b54e3bb47dffd4b2c95bdf schema:name doi
68 schema:value 10.1038/35082019
69 rdf:type schema:PropertyValue
70 N45fd0aeb03054c92874491047c9ef6cf rdf:first sg:person.01127036513.34
71 rdf:rest rdf:nil
72 N4f74113f8c6142498ec7a23c90090160 rdf:first sg:person.0751542607.97
73 rdf:rest Nb8bb382f5d234aff8f55d2219c3ad6b4
74 N77c65d1b8ffb439783fadc8321301243 schema:issueNumber 6840
75 rdf:type schema:PublicationIssue
76 N8c973c960db744e1b1ad1c499e7140c3 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N9c4522e3bfd847baae7469f822c79253 schema:name readcube_id
79 schema:value c2f19f7a39e28b9b4021bd2b6768841a6ba695e72f61a7b67327aac9af6a4f10
80 rdf:type schema:PropertyValue
81 Nac0c0e04eec84d64800602ec3a4ae488 schema:volumeNumber 411
82 rdf:type schema:PublicationVolume
83 Nb4e580a750064c928e13501a8e08c795 schema:name dimensions_id
84 schema:value pub.1040923045
85 rdf:type schema:PropertyValue
86 Nb8bb382f5d234aff8f55d2219c3ad6b4 rdf:first sg:person.0633040120.82
87 rdf:rest Ncb592446624745f9ba952cc6754bee5b
88 Ncb592446624745f9ba952cc6754bee5b rdf:first sg:person.011475355401.49
89 rdf:rest Nefe76cb4fc784ae2adfafb454e78a1da
90 Nefe76cb4fc784ae2adfafb454e78a1da rdf:first sg:person.0760631671.62
91 rdf:rest N1931ae896a594be8849614a42333831b
92 Nf8064deec3484c9c9ac84c5f4450e6b8 schema:name nlm_unique_id
93 schema:value 0410462
94 rdf:type schema:PropertyValue
95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
99 schema:name Condensed Matter Physics
100 rdf:type schema:DefinedTerm
101 sg:journal.1018957 schema:issn 0090-0028
102 1476-4687
103 schema:name Nature
104 rdf:type schema:Periodical
105 sg:person.01101626457.33 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
106 schema:familyName Hudson
107 schema:givenName E. W.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101626457.33
109 rdf:type schema:Person
110 sg:person.01127036513.34 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
111 schema:familyName Davis
112 schema:givenName J. C.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127036513.34
114 rdf:type schema:Person
115 sg:person.011475355401.49 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
116 schema:familyName Pan
117 schema:givenName S. H.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475355401.49
119 rdf:type schema:Person
120 sg:person.015174570477.93 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
121 schema:familyName Uchida
122 schema:givenName S.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174570477.93
124 rdf:type schema:Person
125 sg:person.0633040120.82 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
126 schema:familyName Madhavan
127 schema:givenName V.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633040120.82
129 rdf:type schema:Person
130 sg:person.0751542607.97 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
131 schema:familyName Lang
132 schema:givenName K. M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751542607.97
134 rdf:type schema:Person
135 sg:person.0760631671.62 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
136 schema:familyName Eisaki
137 schema:givenName H.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760631671.62
139 rdf:type schema:Person
140 sg:pub.10.1038/35001534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048431583
141 https://doi.org/10.1038/35001534
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0921-4534(94)92023-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026210381
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0038-1098(97)00112-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004139626
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0921-4534(97)00253-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028068714
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.41.4112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060553763
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.46.14803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060563151
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.49.4261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570861
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.50.4051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573820
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.51.15547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017836307
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.55.12648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036025769
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.56.6201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060586437
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.61.4319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060595897
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.61.r14920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032890163
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.62.961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799228
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.72.3100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809004
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.77.1841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038290150
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.77.2304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813836
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.78.3761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049754410
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.80.4546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817506
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.83.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009217125
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.83.4381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021538480
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.84.3165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030515955
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.84.3422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049164650
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.84.5900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033548326
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.85.2172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046657054
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.86.4116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001887039
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.86.704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022974909
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.88.097003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014765909
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.275.5307.1767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556113
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1143/jpsj.59.2905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063111786
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1143/jpsj.62.2803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063113908
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
204 schema:name §Department of Superconductivity, University of Tokyo, Yayoi, 2-11-16 Bunkyo-ku, Tokyo 113-8656, Japan
205 ‖Department of Applied Physics, Stanford University, Stanford, California, 94205-4060, USA
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
208 schema:name *Department of Physics, University of California, Berkeley, California 94720, USA
209 ‡Department of Physics, Boston University, Boston, Massachusetts 02215, USA
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
212 schema:name §Department of Superconductivity, University of Tokyo, Yayoi, 2-11-16 Bunkyo-ku, Tokyo 113-8656, Japan
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
215 schema:name *Department of Physics, University of California, Berkeley, California 94720, USA
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
218 schema:name *Department of Physics, University of California, Berkeley, California 94720, USA
219 †National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...