Microarrays of cells expressing defined cDNAs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-05

AUTHORS

Junaid Ziauddin, David M. Sabatini

ABSTRACT

Genome and expressed sequence tag projects are rapidly cataloguing and cloning the genes of higher organisms, including humans. An emerging challenge is to rapidly uncover the functions of genes and to identify gene products with desired properties. We have developed a microarray-driven gene expression system for the functional analysis of many gene products in parallel. Mammalian cells are cultured on a glass slide printed in defined locations with different DNAs. Cells growing on the printed areas take up the DNA, creating spots of localized transfection within a lawn of non-transfected cells. By printing sets of complementary DNAs cloned in expression vectors, we make microarrays whose features are clusters of live cells that express a defined cDNA at each location. Here we demonstrate two uses for our approach: as an alternative to protein microarrays for the identification of drug targets, and as an expression cloning system for the discovery of gene products that alter cellular physiology. By screening transfected cell microarrays expressing 192 different cDNAs, we identified proteins involved in tyrosine kinase signalling, apoptosis and cell adhesion, and with distinct subcellular distributions. More... »

PAGES

107

Journal

TITLE

Nature

ISSUE

6833

VOLUME

411

Related Patents

  • Apparatus And System Having Dry Gene Silencing Pools
  • Apparatus And System Having Dry Gene Silencing Compositions
  • Assay Solution Compositions And Methods For Gpcr Arrays
  • Biodegradable Cationic Polymers
  • Biodegradable Cationic Polymers
  • Conductive Substrate For Nucleic Acid Delivery And Method For Delivering Nucleic Acid
  • Method And Device For Screening Molecules In Cells
  • Modified Polynucleotides For Reducing Off-Target Effects In Rna Interference
  • Cancer-Related Genes
  • Microarray Compositions And Methods Of Their Use
  • Methods And Compositions For Synthesis Of Nucleic Acid Molecules Using Multiple Recognition Sites
  • Method And Device For Protein Delivery Into Cells
  • Systems For Particle Manipulation
  • Ultrathin Multilayered Films For Controlled Release Of Anionic Reagents
  • Patterned Substrates For Cell Applications
  • Method For Identifying Genes That Are Upstream Regulators Of Other Genes Of Interest
  • Charge-Dynamic Polymers And Delivery Of Anionic Compounds
  • Method And Device For Protein Delivery Into Cells
  • Cell Culture
  • Reverse Protein Delivery Into Cells On Coded Microparticles
  • Rational Evolution Of Cytokines For Higher Stability, The Cytokines And Encoding Nucleic Acid Molecules
  • Assay Solution Compositions And Methods For Gpcr Arrays
  • High Throughput Assay For Cancer Cell Growth Inhibition
  • Surface Transfection And Expression Procedure
  • Transfection Method And Uses Related Thereto
  • Cell Transfection Apparatus And Methods For Making And Using The Cell Transfection Apparatus
  • Surface Transfection And Expression Procedure
  • Arrays And Methods For Guided Cell Patterning
  • Composition And Method For Increasing Efficiency Of Introduction Of Target Substance Into Cell
  • Time-Lapse Cell Analysis Method
  • High Throughput Assay For Cancer Cell Growth Inhibition
  • Modified Polynucleotides For Reducing Off-Target Effects In Rna Interference
  • Modified Growth Hormone
  • Methods And Compositions For Synthesis Of Nucleic Acid Molecules Using Multiple Recognition Sites
  • Therapeutic Targets In Cancer
  • Microfluidic Particle-Analysis Systems
  • Modified Growth Hormones That Exhibit Increased Protease Resistance And Pharmaceutical Compositions Thereof
  • Method And Apparatus For Sustaining Viability Of Biological Cells On A Substrate
  • Time-Lapse Cell Analysis Method
  • Cell Culture
  • Reverse Transfection Method
  • Method And Device For Screening Molecules In The Cells.
  • Microfluidic Nucleic Acid Analysis
  • Gain Of Function Sorting For Drug Discovery And Development
  • Method And Apparatus For Sustaining Viability Of Biological Cells On A Substrate
  • Method Of Determining A Cellular Response To A Biological Agent
  • Novel Therapeutic Targets In Cancer
  • Nucleic Acid Amplification Using Microfluidic Devices
  • Modified Growth Hormones
  • Composition And Method For Increasing Efficiency Of Introduction Of Target Substance Into Cell
  • Apparatus And System Having Dry Gene Silencing Pools
  • Nucleic Acid Molecules Containing Recombination Sites And Methods Of Using The Same
  • Surface Transfection And Expression Procedure
  • Cacna1e In Cancer Diagnosis Detection And Treatment
  • Microfluidic Nucleic Acid Analysis
  • High Throughput Directed Evolution By Rational Mutagenesis
  • Spatial Biomarker Of Disease And Detection Of Spatial Organization Of Cellular Receptors
  • Methods And Compositions For Synthesis Of Nucleic Acid Molecules Using Multiplerecognition Sites
  • Method And Device For Protein Delivery Into Cells
  • Biodegradable Cationic Polymers
  • Anionic Charge-Dynamic Polymers For Release Of Cationic Agents
  • Mhc-Antigen Arrays For Detection And Characterization Of Immune Responses
  • Mechanical Transfection Devices And Methods
  • Microfluidic Particle-Analysis Systems
  • Anionic Charge-Dynamic Polymers For Release Of Cationic Agents
  • Method And Device For Screening Molecules In Cells
  • Methods And Computer Systems For Analyzing High-Throughput Assays
  • Matrix Assays In Genomically Indexed Cells
  • Apparatus And System Having Dry Gene Silencing Pools
  • Nucleic Acid Amplification Using Microfluidic Devices
  • Microfabricated Structure Having Parallel And Orthogonal Flow Channels Controlled By Row And Column Multiplexors
  • Immobilized Cells And Liposomes And Method Of Immobilizing The Same
  • Cell Transfection Apparatus And Methods For Making And Using The Cell Transfection Apparatus
  • Biosensor Arrays And Methods
  • Cell-Based Microarrays And Methods Of Use
  • Nucleic Acid Molecules Containing Recombination Sites And Methods Of Using The Same
  • Multiplexed Cell Analysis System
  • New Method Of Detecting And Analysing Protein Interactions In Vivo
  • Therapeutic Gpcr Targets In Cancer
  • Charge-Dynamic Polymers And Delivery Of Anionic Compounds
  • Parallel Macromolecular Delivery And Biochemical/Electrochemical Interface To Cells Employing Nanostructures
  • Method And Device For Protein Delivery Into Cells
  • Modified Multilayered Film
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35075114

    DOI

    http://dx.doi.org/10.1038/35075114

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011603691

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11333987


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cloning, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Complementary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MAP Kinase Signaling System", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Binding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tacrolimus Binding Protein 1A", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transfection", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ziauddin", 
            "givenName": "Junaid", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sabatini", 
            "givenName": "David M.", 
            "id": "sg:person.013707532037.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707532037.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/nar/18.12.3587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002928860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1296-1675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005458398", 
              "https://doi.org/10.1038/nbt1296-1675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.1.185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012689965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/emboj/16.17.5386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028431262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35001009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035773549", 
              "https://doi.org/10.1038/35001009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35001009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035773549", 
              "https://doi.org/10.1038/35001009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-6147(94)90052-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036559176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-6147(94)90052-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036559176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/341758a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040106884", 
              "https://doi.org/10.1038/341758a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/79494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047104612", 
              "https://doi.org/10.1038/79494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/79494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047104612", 
              "https://doi.org/10.1038/79494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/341755a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047946150", 
              "https://doi.org/10.1038/341755a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1074-7613(00)80456-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048762261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1083/jcb.119.3.493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049060444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35055500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050567122", 
              "https://doi.org/10.1038/35055500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35055500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050567122", 
              "https://doi.org/10.1038/35055500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/abio.1999.4063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053136957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.gr1547r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060407570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.154701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060407570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1702904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062501998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5235.467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.284.5417.1161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062565241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.286.5439.455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062566964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7164/antibiotics.40.1256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073632930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074694974", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078888791", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-05", 
        "datePublishedReg": "2001-05-01", 
        "description": "Genome and expressed sequence tag projects are rapidly cataloguing and cloning the genes of higher organisms, including humans. An emerging challenge is to rapidly uncover the functions of genes and to identify gene products with desired properties. We have developed a microarray-driven gene expression system for the functional analysis of many gene products in parallel. Mammalian cells are cultured on a glass slide printed in defined locations with different DNAs. Cells growing on the printed areas take up the DNA, creating spots of localized transfection within a lawn of non-transfected cells. By printing sets of complementary DNAs cloned in expression vectors, we make microarrays whose features are clusters of live cells that express a defined cDNA at each location. Here we demonstrate two uses for our approach: as an alternative to protein microarrays for the identification of drug targets, and as an expression cloning system for the discovery of gene products that alter cellular physiology. By screening transfected cell microarrays expressing 192 different cDNAs, we identified proteins involved in tyrosine kinase signalling, apoptosis and cell adhesion, and with distinct subcellular distributions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/35075114", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6833", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "411"
          }
        ], 
        "name": "Microarrays of cells expressing defined cDNAs", 
        "pagination": "107", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "37492b43aaa15054be040856e3486271f6003749ea9a9ea8a21a53e38e21a12b"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11333987"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35075114"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011603691"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35075114", 
          "https://app.dimensions.ai/details/publication/pub.1011603691"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87082_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/35075114"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35075114'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35075114'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35075114'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35075114'


     

    This table displays all metadata directly associated to this object as RDF triples.

    201 TRIPLES      21 PREDICATES      65 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35075114 schema:about N0d55255b76fb4f43bd7e8ebd146196c1
    2 N16c3d7f1240c43c7b816490a04256983
    3 N24d68ae0d47e4492adacaed31d69ea0a
    4 N33fc05073f7a45ab89402bf9db7da38e
    5 N3496ceced8584a44a2754fdada5865b6
    6 N65e0617bb6fb4d88bbe6ae3280aaf7ed
    7 N6ebfdc3cfe73448aacf718ff5b96c13c
    8 N9226d1cec55b492888c3018df801c505
    9 N978a8d19d8764103b6b50f073bb84b81
    10 Na0ddf714688f4e16b54eef64561522ae
    11 Nacbbf117dce94230a3def1dab34c96a7
    12 Nae2e1e57c1ef436789c878415a6d8038
    13 Nd6a48d6e6dcd4c11a2b45c9594189486
    14 Ne6e0479599c247c4859e94832cdb1303
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author Na527276982db4fafbe324b76f40dd801
    18 schema:citation sg:pub.10.1038/341755a0
    19 sg:pub.10.1038/341758a0
    20 sg:pub.10.1038/35001009
    21 sg:pub.10.1038/35055500
    22 sg:pub.10.1038/79494
    23 sg:pub.10.1038/nbt1296-1675
    24 https://app.dimensions.ai/details/publication/pub.1074694974
    25 https://app.dimensions.ai/details/publication/pub.1078888791
    26 https://doi.org/10.1006/abio.1999.4063
    27 https://doi.org/10.1016/0165-6147(94)90052-3
    28 https://doi.org/10.1016/s1074-7613(00)80456-2
    29 https://doi.org/10.1083/jcb.119.3.493
    30 https://doi.org/10.1093/emboj/16.17.5386
    31 https://doi.org/10.1093/nar/18.12.3587
    32 https://doi.org/10.1093/nar/29.1.185
    33 https://doi.org/10.1101/gr.154701
    34 https://doi.org/10.1101/gr.gr1547r
    35 https://doi.org/10.1126/science.1702904
    36 https://doi.org/10.1126/science.270.5235.467
    37 https://doi.org/10.1126/science.284.5417.1161
    38 https://doi.org/10.1126/science.286.5439.455
    39 https://doi.org/10.7164/antibiotics.40.1256
    40 schema:datePublished 2001-05
    41 schema:datePublishedReg 2001-05-01
    42 schema:description Genome and expressed sequence tag projects are rapidly cataloguing and cloning the genes of higher organisms, including humans. An emerging challenge is to rapidly uncover the functions of genes and to identify gene products with desired properties. We have developed a microarray-driven gene expression system for the functional analysis of many gene products in parallel. Mammalian cells are cultured on a glass slide printed in defined locations with different DNAs. Cells growing on the printed areas take up the DNA, creating spots of localized transfection within a lawn of non-transfected cells. By printing sets of complementary DNAs cloned in expression vectors, we make microarrays whose features are clusters of live cells that express a defined cDNA at each location. Here we demonstrate two uses for our approach: as an alternative to protein microarrays for the identification of drug targets, and as an expression cloning system for the discovery of gene products that alter cellular physiology. By screening transfected cell microarrays expressing 192 different cDNAs, we identified proteins involved in tyrosine kinase signalling, apoptosis and cell adhesion, and with distinct subcellular distributions.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N9e8474fb88524a82b3af9d0ef2671378
    47 Nca8a8f7366f34ab4beebc108e7cc775b
    48 sg:journal.1018957
    49 schema:name Microarrays of cells expressing defined cDNAs
    50 schema:pagination 107
    51 schema:productId N0dedf3056b4c467aaae69657dcef64d3
    52 N7f33bfe0bc0e4d36a6759b3406a80e8e
    53 Na51aa7d181364003858604e79c136871
    54 Nb34f556b47534f30b13876ca89a3f3fb
    55 Nc6473f8d2f3d4c28a892eaa5cf33842d
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011603691
    57 https://doi.org/10.1038/35075114
    58 schema:sdDatePublished 2019-04-11T12:21
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N0d58cd20214a4ee3b5e143ad2a25bcbb
    61 schema:url https://www.nature.com/articles/35075114
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N0d55255b76fb4f43bd7e8ebd146196c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    66 schema:name Genes
    67 rdf:type schema:DefinedTerm
    68 N0d58cd20214a4ee3b5e143ad2a25bcbb schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N0dedf3056b4c467aaae69657dcef64d3 schema:name dimensions_id
    71 schema:value pub.1011603691
    72 rdf:type schema:PropertyValue
    73 N16c3d7f1240c43c7b816490a04256983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Oligonucleotide Array Sequence Analysis
    75 rdf:type schema:DefinedTerm
    76 N24d68ae0d47e4492adacaed31d69ea0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    77 schema:name Animals
    78 rdf:type schema:DefinedTerm
    79 N33fc05073f7a45ab89402bf9db7da38e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Plasmids
    81 rdf:type schema:DefinedTerm
    82 N3496ceced8584a44a2754fdada5865b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Protein Binding
    84 rdf:type schema:DefinedTerm
    85 N65e0617bb6fb4d88bbe6ae3280aaf7ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Transfection
    87 rdf:type schema:DefinedTerm
    88 N6ebfdc3cfe73448aacf718ff5b96c13c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Proteins
    90 rdf:type schema:DefinedTerm
    91 N7f33bfe0bc0e4d36a6759b3406a80e8e schema:name pubmed_id
    92 schema:value 11333987
    93 rdf:type schema:PropertyValue
    94 N9226d1cec55b492888c3018df801c505 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Phenotype
    96 rdf:type schema:DefinedTerm
    97 N976a15924a7b4d06bf3775ab6ed8790f rdf:first sg:person.013707532037.68
    98 rdf:rest rdf:nil
    99 N978a8d19d8764103b6b50f073bb84b81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Cells, Cultured
    101 rdf:type schema:DefinedTerm
    102 N9e8474fb88524a82b3af9d0ef2671378 schema:volumeNumber 411
    103 rdf:type schema:PublicationVolume
    104 Na0ddf714688f4e16b54eef64561522ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name DNA, Complementary
    106 rdf:type schema:DefinedTerm
    107 Na51aa7d181364003858604e79c136871 schema:name readcube_id
    108 schema:value 37492b43aaa15054be040856e3486271f6003749ea9a9ea8a21a53e38e21a12b
    109 rdf:type schema:PropertyValue
    110 Na527276982db4fafbe324b76f40dd801 rdf:first Nac08007abe22420c950dc1be10a0a699
    111 rdf:rest N976a15924a7b4d06bf3775ab6ed8790f
    112 Nac08007abe22420c950dc1be10a0a699 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    113 schema:familyName Ziauddin
    114 schema:givenName Junaid
    115 rdf:type schema:Person
    116 Nacbbf117dce94230a3def1dab34c96a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Cell Line
    118 rdf:type schema:DefinedTerm
    119 Nae2e1e57c1ef436789c878415a6d8038 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Tacrolimus Binding Protein 1A
    121 rdf:type schema:DefinedTerm
    122 Nb34f556b47534f30b13876ca89a3f3fb schema:name nlm_unique_id
    123 schema:value 0410462
    124 rdf:type schema:PropertyValue
    125 Nc6473f8d2f3d4c28a892eaa5cf33842d schema:name doi
    126 schema:value 10.1038/35075114
    127 rdf:type schema:PropertyValue
    128 Nca8a8f7366f34ab4beebc108e7cc775b schema:issueNumber 6833
    129 rdf:type schema:PublicationIssue
    130 Nd6a48d6e6dcd4c11a2b45c9594189486 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name MAP Kinase Signaling System
    132 rdf:type schema:DefinedTerm
    133 Ne6e0479599c247c4859e94832cdb1303 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Cloning, Molecular
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Biological Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Genetics
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1018957 schema:issn 0090-0028
    143 1476-4687
    144 schema:name Nature
    145 rdf:type schema:Periodical
    146 sg:person.013707532037.68 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    147 schema:familyName Sabatini
    148 schema:givenName David M.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707532037.68
    150 rdf:type schema:Person
    151 sg:pub.10.1038/341755a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047946150
    152 https://doi.org/10.1038/341755a0
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/341758a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040106884
    155 https://doi.org/10.1038/341758a0
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
    158 https://doi.org/10.1038/35001009
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/35055500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050567122
    161 https://doi.org/10.1038/35055500
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/79494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047104612
    164 https://doi.org/10.1038/79494
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
    167 https://doi.org/10.1038/nbt1296-1675
    168 rdf:type schema:CreativeWork
    169 https://app.dimensions.ai/details/publication/pub.1074694974 schema:CreativeWork
    170 https://app.dimensions.ai/details/publication/pub.1078888791 schema:CreativeWork
    171 https://doi.org/10.1006/abio.1999.4063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053136957
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/0165-6147(94)90052-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036559176
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s1074-7613(00)80456-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048762261
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1083/jcb.119.3.493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049060444
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1093/emboj/16.17.5386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028431262
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1093/nar/18.12.3587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002928860
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1093/nar/29.1.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012689965
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1101/gr.154701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060407570
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1101/gr.gr1547r schema:sameAs https://app.dimensions.ai/details/publication/pub.1060407570
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1126/science.1702904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062501998
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1126/science.284.5417.1161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062565241
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1126/science.286.5439.455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566964
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.7164/antibiotics.40.1256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073632930
    198 rdf:type schema:CreativeWork
    199 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    200 schema:name Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
    201 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...