Magnetic-field-induced superconductivity in a two-dimensional organic conductor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-04

AUTHORS

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, H. Kobayashi

ABSTRACT

The application of a sufficiently strong magnetic field to a superconductor will, in general, destroy the superconducting state. Two mechanisms are responsible for this. The first is the Zeeman effect, which breaks apart the paired electrons if they are in a spin-singlet (but not a spin-triplet) state. The second is the so-called 'orbital' effect, whereby the vortices penetrate into the superconductors and the energy gain due to the formation of the paired electrons is lost. For the case of layered, two-dimensional superconductors, such as the high-Tc copper oxides, the orbital effect is reduced when the applied magnetic field is parallel to the conducting layers. Here we report resistance and magnetic-torque experiments on single crystals of the quasi-two-dimensional organic conductor lambda-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene. We find that for magnetic fields applied exactly parallel to the conducting layers of the crystals, superconductivity is induced for fields above 17 T at a temperature of 0.1 K. The resulting phase diagram indicates that the transition temperature increases with magnetic field, that is, the superconducting state is further stabilized with magnetic field. More... »

PAGES

908

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35073531

DOI

http://dx.doi.org/10.1038/35073531

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039687100

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11309610


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "*National Research Institute for Metals, Tsukuba, Ibaraki 305-0003, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uji", 
        "givenName": "S.", 
        "id": "sg:person.011162176335.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162176335.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "*National Research Institute for Metals, Tsukuba, Ibaraki 305-0003, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shinagawa", 
        "givenName": "H.", 
        "id": "sg:person.012140023011.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140023011.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "*National Research Institute for Metals, Tsukuba, Ibaraki 305-0003, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terashima", 
        "givenName": "T.", 
        "id": "sg:person.0625356772.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625356772.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "*National Research Institute for Metals, Tsukuba, Ibaraki 305-0003, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakabe", 
        "givenName": "T.", 
        "id": "sg:person.016624343655.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624343655.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "*National Research Institute for Metals, Tsukuba, Ibaraki 305-0003, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terai", 
        "givenName": "Y.", 
        "id": "sg:person.011230473727.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011230473727.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "\u2020Electrotechnical laboratory, Tsukuba, Ibaraki 305-8568, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tokumoto", 
        "givenName": "M.", 
        "id": "sg:person.015270364301.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270364301.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "\u2021Research Centre for Spectrochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kobayashi", 
        "givenName": "A.", 
        "id": "sg:person.01232621260.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232621260.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u00a7Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "H.", 
        "id": "sg:person.01300734460.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300734460.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u00a7Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kobayashi", 
        "givenName": "H.", 
        "id": "sg:person.0737672160.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737672160.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/ja9523350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001824602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9523350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001824602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007728000531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020118994", 
          "https://doi.org/10.1023/a:1007728000531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(96)00105-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026022563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510050207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047564039", 
          "https://doi.org/10.1007/s100510050207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9733853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055868621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9733853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055868621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1139552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057667037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1777362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057820787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.r8526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.r8526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.9.266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.9.266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.9.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.9.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.67.2618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063117343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.69.1966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063118657"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-04", 
    "datePublishedReg": "2001-04-01", 
    "description": "The application of a sufficiently strong magnetic field to a superconductor will, in general, destroy the superconducting state. Two mechanisms are responsible for this. The first is the Zeeman effect, which breaks apart the paired electrons if they are in a spin-singlet (but not a spin-triplet) state. The second is the so-called 'orbital' effect, whereby the vortices penetrate into the superconductors and the energy gain due to the formation of the paired electrons is lost. For the case of layered, two-dimensional superconductors, such as the high-Tc copper oxides, the orbital effect is reduced when the applied magnetic field is parallel to the conducting layers. Here we report resistance and magnetic-torque experiments on single crystals of the quasi-two-dimensional organic conductor lambda-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene. We find that for magnetic fields applied exactly parallel to the conducting layers of the crystals, superconductivity is induced for fields above 17 T at a temperature of 0.1 K. The resulting phase diagram indicates that the transition temperature increases with magnetic field, that is, the superconducting state is further stabilized with magnetic field.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35073531", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6831", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "410"
      }
    ], 
    "name": "Magnetic-field-induced superconductivity in a two-dimensional organic conductor", 
    "pagination": "908", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd0d39910ad10b669fa882760b6e4e450a4ac31ddb7fe25b4b53a194d73e43aa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11309610"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35073531"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039687100"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35073531", 
      "https://app.dimensions.ai/details/publication/pub.1039687100"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53999_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35073531"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35073531'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35073531'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35073531'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35073531'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      44 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35073531 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne2d5b62d024b4cb8949c507da7cbecb3
4 schema:citation sg:pub.10.1007/s100510050207
5 sg:pub.10.1023/a:1007728000531
6 https://doi.org/10.1016/0921-4534(96)00105-0
7 https://doi.org/10.1021/ja9523350
8 https://doi.org/10.1021/ja9733853
9 https://doi.org/10.1063/1.1139552
10 https://doi.org/10.1063/1.1777362
11 https://doi.org/10.1103/physrevb.12.877
12 https://doi.org/10.1103/physrevb.56.r8526
13 https://doi.org/10.1103/physrevlett.53.497
14 https://doi.org/10.1103/physrevlett.70.2613
15 https://doi.org/10.1103/physrevlett.9.266
16 https://doi.org/10.1103/physrevlett.9.290
17 https://doi.org/10.1143/jpsj.67.2618
18 https://doi.org/10.1143/jpsj.69.1966
19 schema:datePublished 2001-04
20 schema:datePublishedReg 2001-04-01
21 schema:description The application of a sufficiently strong magnetic field to a superconductor will, in general, destroy the superconducting state. Two mechanisms are responsible for this. The first is the Zeeman effect, which breaks apart the paired electrons if they are in a spin-singlet (but not a spin-triplet) state. The second is the so-called 'orbital' effect, whereby the vortices penetrate into the superconductors and the energy gain due to the formation of the paired electrons is lost. For the case of layered, two-dimensional superconductors, such as the high-Tc copper oxides, the orbital effect is reduced when the applied magnetic field is parallel to the conducting layers. Here we report resistance and magnetic-torque experiments on single crystals of the quasi-two-dimensional organic conductor lambda-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene. We find that for magnetic fields applied exactly parallel to the conducting layers of the crystals, superconductivity is induced for fields above 17 T at a temperature of 0.1 K. The resulting phase diagram indicates that the transition temperature increases with magnetic field, that is, the superconducting state is further stabilized with magnetic field.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N77b4383ea3a248f88dfdfd0fa5b74bdb
26 Nf343cde6468a4ef3a35aecc11522301c
27 sg:journal.1018957
28 schema:name Magnetic-field-induced superconductivity in a two-dimensional organic conductor
29 schema:pagination 908
30 schema:productId N1a708aa453364973b28f5555724f9cb2
31 N721e7999fff148728c4d279be28a59be
32 N7a9f53fa919b42129cb0c9d14e8e1caf
33 Nadc69e2188274bd2aeb4848ff16c3740
34 Ncedd5ba41ef847c0b7fe44867f9a8221
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039687100
36 https://doi.org/10.1038/35073531
37 schema:sdDatePublished 2019-04-11T12:13
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N9723959c312d445d81fc5cd5486709e7
40 schema:url https://www.nature.com/articles/35073531
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N04bb132b3b2e4611b0123bfaea1faeeb rdf:first sg:person.015270364301.03
45 rdf:rest N2671e187ec3d48b8b66717c2cf9db23b
46 N0998877f5db04165b4c88872f01ceed7 rdf:first sg:person.016624343655.39
47 rdf:rest Na3f22a81115845efafb2eec4a9a3243b
48 N0b9644edadcd469d8ebefbb03997b8c3 rdf:first sg:person.012140023011.08
49 rdf:rest Nfa81cc39999c48f8b4b020d22eaa24ac
50 N1a708aa453364973b28f5555724f9cb2 schema:name dimensions_id
51 schema:value pub.1039687100
52 rdf:type schema:PropertyValue
53 N2671e187ec3d48b8b66717c2cf9db23b rdf:first sg:person.01232621260.40
54 rdf:rest N4602217e5dc0457e95f41605ea191f0b
55 N29dcaddba3414e6ea5278b7c32aabb45 schema:name §Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
56 rdf:type schema:Organization
57 N4602217e5dc0457e95f41605ea191f0b rdf:first sg:person.01300734460.63
58 rdf:rest N9d7750b6ec334b6f890238f8bf60807f
59 N62c0bfe6a9aa41babaa76d3c153e8aa0 schema:name §Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
60 rdf:type schema:Organization
61 N721e7999fff148728c4d279be28a59be schema:name pubmed_id
62 schema:value 11309610
63 rdf:type schema:PropertyValue
64 N77b4383ea3a248f88dfdfd0fa5b74bdb schema:issueNumber 6831
65 rdf:type schema:PublicationIssue
66 N7a9f53fa919b42129cb0c9d14e8e1caf schema:name nlm_unique_id
67 schema:value 0410462
68 rdf:type schema:PropertyValue
69 N9723959c312d445d81fc5cd5486709e7 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N9d7750b6ec334b6f890238f8bf60807f rdf:first sg:person.0737672160.93
72 rdf:rest rdf:nil
73 Na3f22a81115845efafb2eec4a9a3243b rdf:first sg:person.011230473727.37
74 rdf:rest N04bb132b3b2e4611b0123bfaea1faeeb
75 Nadc69e2188274bd2aeb4848ff16c3740 schema:name doi
76 schema:value 10.1038/35073531
77 rdf:type schema:PropertyValue
78 Ncedd5ba41ef847c0b7fe44867f9a8221 schema:name readcube_id
79 schema:value bd0d39910ad10b669fa882760b6e4e450a4ac31ddb7fe25b4b53a194d73e43aa
80 rdf:type schema:PropertyValue
81 Ne2d5b62d024b4cb8949c507da7cbecb3 rdf:first sg:person.011162176335.59
82 rdf:rest N0b9644edadcd469d8ebefbb03997b8c3
83 Nf343cde6468a4ef3a35aecc11522301c schema:volumeNumber 410
84 rdf:type schema:PublicationVolume
85 Nfa81cc39999c48f8b4b020d22eaa24ac rdf:first sg:person.0625356772.79
86 rdf:rest N0998877f5db04165b4c88872f01ceed7
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
91 schema:name Materials Engineering
92 rdf:type schema:DefinedTerm
93 sg:journal.1018957 schema:issn 0090-0028
94 1476-4687
95 schema:name Nature
96 rdf:type schema:Periodical
97 sg:person.011162176335.59 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
98 schema:familyName Uji
99 schema:givenName S.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162176335.59
101 rdf:type schema:Person
102 sg:person.011230473727.37 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
103 schema:familyName Terai
104 schema:givenName Y.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011230473727.37
106 rdf:type schema:Person
107 sg:person.012140023011.08 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
108 schema:familyName Shinagawa
109 schema:givenName H.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140023011.08
111 rdf:type schema:Person
112 sg:person.01232621260.40 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
113 schema:familyName Kobayashi
114 schema:givenName A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232621260.40
116 rdf:type schema:Person
117 sg:person.01300734460.63 schema:affiliation N62c0bfe6a9aa41babaa76d3c153e8aa0
118 schema:familyName Tanaka
119 schema:givenName H.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300734460.63
121 rdf:type schema:Person
122 sg:person.015270364301.03 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
123 schema:familyName Tokumoto
124 schema:givenName M.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270364301.03
126 rdf:type schema:Person
127 sg:person.016624343655.39 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
128 schema:familyName Yakabe
129 schema:givenName T.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624343655.39
131 rdf:type schema:Person
132 sg:person.0625356772.79 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
133 schema:familyName Terashima
134 schema:givenName T.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625356772.79
136 rdf:type schema:Person
137 sg:person.0737672160.93 schema:affiliation N29dcaddba3414e6ea5278b7c32aabb45
138 schema:familyName Kobayashi
139 schema:givenName H.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737672160.93
141 rdf:type schema:Person
142 sg:pub.10.1007/s100510050207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047564039
143 https://doi.org/10.1007/s100510050207
144 rdf:type schema:CreativeWork
145 sg:pub.10.1023/a:1007728000531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020118994
146 https://doi.org/10.1023/a:1007728000531
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0921-4534(96)00105-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026022563
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/ja9523350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001824602
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/ja9733853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055868621
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.1139552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057667037
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.1777362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057820787
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.12.877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060520602
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.56.r8526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587088
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.53.497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790931
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.70.2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806764
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.9.266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825959
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.9.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825972
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1143/jpsj.67.2618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063117343
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1143/jpsj.69.1966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063118657
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.208504.b schema:alternateName National Institute of Advanced Industrial Science and Technology
175 schema:name †Electrotechnical laboratory, Tsukuba, Ibaraki 305-8568, Japan
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
178 schema:name *National Research Institute for Metals, Tsukuba, Ibaraki 305-0003, Japan
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
181 schema:name ‡Research Centre for Spectrochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...