2001-05
AUTHORSVladimir I. Titorenko, Richard A. Rachubinski
ABSTRACTKey Points Like the Golgi apparatus, the population of peroxisomes in a cell consists of structurally and functionally distinct subcompartments (subforms) that are related through the ordered conversion of one subform to another. The import of a limited subset of peroxisomal membrane proteins commits a specialized preperoxisomal endomembrane to become the earliest peroxisomal precursor (nascent peroxisome). Nascent peroxisomes can import another subset of membrane proteins and the bulk of matrix proteins, and they eventually mature into functional peroxisomes in a multistep process. In yeast and plant cells, the endoplasmic reticulum, might serve as the preperoxisomal endomembrane. The nature of the preperoxisomal endomembrane is under debate. In human cells, a preperoxisomal endomembrane might exist as an autonomous vesicular structure. Many soluble and membrane-associated components of the peroxisomal machineries specific for the import of membrane and matrix proteins have been identified. These import machineries probably assemble in a temporally and spatially ordered manner in distinct intermediates along the peroxisome assembly pathway. Whereas only unfolded, monomeric proteins can be translocated across the endoplasmic reticulum and mitochondrial membranes, the machinery for the import of matrix proteins can translocate completely folded polypeptides and oligomeric proteins across the peroxisomal membrane. Peroxisomes undergo both constitutive (independent of extracellular stimuli) division during mitosis and regulated division induced in response to some external signal. A specific subset of peroxins coordinates the growth and regulated division of peroxisomes. More... »
PAGES357-368
http://scigraph.springernature.com/pub.10.1038/35073063
DOIhttp://dx.doi.org/10.1038/35073063
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033819938
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/11331910
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Membrane",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Peroxisomes",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Cell Biology, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada",
"id": "http://www.grid.ac/institutes/grid.17089.37",
"name": [
"Department of Cell Biology, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada"
],
"type": "Organization"
},
"familyName": "Titorenko",
"givenName": "Vladimir I.",
"id": "sg:person.01237376277.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237376277.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Cell Biology, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada",
"id": "http://www.grid.ac/institutes/grid.17089.37",
"name": [
"Department of Cell Biology, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada"
],
"type": "Organization"
},
"familyName": "Rachubinski",
"givenName": "Richard A.",
"id": "sg:person.01212415532.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212415532.62"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/ng0295-115",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028344814",
"https://doi.org/10.1038/ng0295-115"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/370111a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002529043",
"https://doi.org/10.1038/370111a0"
],
"type": "CreativeWork"
}
],
"datePublished": "2001-05",
"datePublishedReg": "2001-05-01",
"description": "Key Points Like the Golgi apparatus, the population of peroxisomes in a cell consists of structurally and functionally distinct subcompartments (subforms) that are related through the ordered conversion of one subform to another. The import of a limited subset of peroxisomal membrane proteins commits a specialized preperoxisomal endomembrane to become the earliest peroxisomal precursor (nascent peroxisome). Nascent peroxisomes can import another subset of membrane proteins and the bulk of matrix proteins, and they eventually mature into functional peroxisomes in a multistep process. In yeast and plant cells, the endoplasmic reticulum, might serve as the preperoxisomal endomembrane. The nature of the preperoxisomal endomembrane is under debate. In human cells, a preperoxisomal endomembrane might exist as an autonomous vesicular structure. Many soluble and membrane-associated components of the peroxisomal machineries specific for the import of membrane and matrix proteins have been identified. These import machineries probably assemble in a temporally and spatially ordered manner in distinct intermediates along the peroxisome assembly pathway. Whereas only unfolded, monomeric proteins can be translocated across the endoplasmic reticulum and mitochondrial membranes, the machinery for the import of matrix proteins can translocate completely folded polypeptides and oligomeric proteins across the peroxisomal membrane. Peroxisomes undergo both constitutive (independent of extracellular stimuli) division during mitosis and regulated division induced in response to some external signal. A specific subset of peroxins coordinates the growth and regulated division of peroxisomes.",
"genre": "article",
"id": "sg:pub.10.1038/35073063",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1023609",
"issn": [
"1471-0072",
"1471-0080"
],
"name": "Nature Reviews Molecular Cell Biology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2"
}
],
"keywords": [
"matrix proteins",
"membrane proteins",
"endoplasmic reticulum",
"peroxisomal membrane protein",
"membrane-associated components",
"import machinery",
"plant cells",
"peroxisomal membrane",
"assembly pathway",
"distinct subcompartments",
"mitochondrial membrane",
"oligomeric proteins",
"endomembranes",
"functional peroxisomes",
"monomeric protein",
"Golgi apparatus",
"human cells",
"vesicular structures",
"distinct intermediates",
"external signals",
"peroxisomes",
"protein",
"machinery",
"multistep process",
"life cycle",
"specific subset",
"reticulum",
"membrane",
"cells",
"division",
"import",
"peroxins",
"limited subset",
"mitosis",
"yeast",
"subcompartments",
"polypeptide",
"pathway",
"subset",
"growth",
"intermediates",
"population",
"manner",
"subforms",
"precursors",
"cycle",
"response",
"apparatus",
"signals",
"components",
"structure",
"conversion",
"process",
"nature",
"bulk",
"key points",
"point",
"debate"
],
"name": "The life cycle of the peroxisome",
"pagination": "357-368",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033819938"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/35073063"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"11331910"
]
}
],
"sameAs": [
"https://doi.org/10.1038/35073063",
"https://app.dimensions.ai/details/publication/pub.1033819938"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_309.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/35073063"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35073063'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35073063'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35073063'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35073063'
This table displays all metadata directly associated to this object as RDF triples.
150 TRIPLES
21 PREDICATES
90 URIs
80 LITERALS
11 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/35073063 | schema:about | N289757e0f4364feb803cf29cfa005950 |
2 | ″ | ″ | N6c1cc67c450e4f87a18a6c3b5066ee22 |
3 | ″ | ″ | Ncedd3eaac76445609a684e8f31b738a0 |
4 | ″ | ″ | Ne7e6efaa37604c5a91defff8827b33d3 |
5 | ″ | ″ | anzsrc-for:06 |
6 | ″ | ″ | anzsrc-for:0601 |
7 | ″ | schema:author | Na9894f92d67346d2b9a46285e006aaee |
8 | ″ | schema:citation | sg:pub.10.1038/370111a0 |
9 | ″ | ″ | sg:pub.10.1038/ng0295-115 |
10 | ″ | schema:datePublished | 2001-05 |
11 | ″ | schema:datePublishedReg | 2001-05-01 |
12 | ″ | schema:description | Key Points Like the Golgi apparatus, the population of peroxisomes in a cell consists of structurally and functionally distinct subcompartments (subforms) that are related through the ordered conversion of one subform to another. The import of a limited subset of peroxisomal membrane proteins commits a specialized preperoxisomal endomembrane to become the earliest peroxisomal precursor (nascent peroxisome). Nascent peroxisomes can import another subset of membrane proteins and the bulk of matrix proteins, and they eventually mature into functional peroxisomes in a multistep process. In yeast and plant cells, the endoplasmic reticulum, might serve as the preperoxisomal endomembrane. The nature of the preperoxisomal endomembrane is under debate. In human cells, a preperoxisomal endomembrane might exist as an autonomous vesicular structure. Many soluble and membrane-associated components of the peroxisomal machineries specific for the import of membrane and matrix proteins have been identified. These import machineries probably assemble in a temporally and spatially ordered manner in distinct intermediates along the peroxisome assembly pathway. Whereas only unfolded, monomeric proteins can be translocated across the endoplasmic reticulum and mitochondrial membranes, the machinery for the import of matrix proteins can translocate completely folded polypeptides and oligomeric proteins across the peroxisomal membrane. Peroxisomes undergo both constitutive (independent of extracellular stimuli) division during mitosis and regulated division induced in response to some external signal. A specific subset of peroxins coordinates the growth and regulated division of peroxisomes. |
13 | ″ | schema:genre | article |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N0a104d923f2f4a7d87975b0365581163 |
16 | ″ | ″ | Nc1ea60aed7224882a5fd6fd09f513bb3 |
17 | ″ | ″ | sg:journal.1023609 |
18 | ″ | schema:keywords | Golgi apparatus |
19 | ″ | ″ | apparatus |
20 | ″ | ″ | assembly pathway |
21 | ″ | ″ | bulk |
22 | ″ | ″ | cells |
23 | ″ | ″ | components |
24 | ″ | ″ | conversion |
25 | ″ | ″ | cycle |
26 | ″ | ″ | debate |
27 | ″ | ″ | distinct intermediates |
28 | ″ | ″ | distinct subcompartments |
29 | ″ | ″ | division |
30 | ″ | ″ | endomembranes |
31 | ″ | ″ | endoplasmic reticulum |
32 | ″ | ″ | external signals |
33 | ″ | ″ | functional peroxisomes |
34 | ″ | ″ | growth |
35 | ″ | ″ | human cells |
36 | ″ | ″ | import |
37 | ″ | ″ | import machinery |
38 | ″ | ″ | intermediates |
39 | ″ | ″ | key points |
40 | ″ | ″ | life cycle |
41 | ″ | ″ | limited subset |
42 | ″ | ″ | machinery |
43 | ″ | ″ | manner |
44 | ″ | ″ | matrix proteins |
45 | ″ | ″ | membrane |
46 | ″ | ″ | membrane proteins |
47 | ″ | ″ | membrane-associated components |
48 | ″ | ″ | mitochondrial membrane |
49 | ″ | ″ | mitosis |
50 | ″ | ″ | monomeric protein |
51 | ″ | ″ | multistep process |
52 | ″ | ″ | nature |
53 | ″ | ″ | oligomeric proteins |
54 | ″ | ″ | pathway |
55 | ″ | ″ | peroxins |
56 | ″ | ″ | peroxisomal membrane |
57 | ″ | ″ | peroxisomal membrane protein |
58 | ″ | ″ | peroxisomes |
59 | ″ | ″ | plant cells |
60 | ″ | ″ | point |
61 | ″ | ″ | polypeptide |
62 | ″ | ″ | population |
63 | ″ | ″ | precursors |
64 | ″ | ″ | process |
65 | ″ | ″ | protein |
66 | ″ | ″ | response |
67 | ″ | ″ | reticulum |
68 | ″ | ″ | signals |
69 | ″ | ″ | specific subset |
70 | ″ | ″ | structure |
71 | ″ | ″ | subcompartments |
72 | ″ | ″ | subforms |
73 | ″ | ″ | subset |
74 | ″ | ″ | vesicular structures |
75 | ″ | ″ | yeast |
76 | ″ | schema:name | The life cycle of the peroxisome |
77 | ″ | schema:pagination | 357-368 |
78 | ″ | schema:productId | N9045e724c9264ed79bff24ad72d824c7 |
79 | ″ | ″ | Nb3b17496cf034685a23d8305b67fd78d |
80 | ″ | ″ | Ne2dcd8058e6343e7b7296957b5978f38 |
81 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033819938 |
82 | ″ | ″ | https://doi.org/10.1038/35073063 |
83 | ″ | schema:sdDatePublished | 2022-08-04T16:52 |
84 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
85 | ″ | schema:sdPublisher | N0c84a5eae1d44e5daa68f7c01a051f02 |
86 | ″ | schema:url | https://doi.org/10.1038/35073063 |
87 | ″ | sgo:license | sg:explorer/license/ |
88 | ″ | sgo:sdDataset | articles |
89 | ″ | rdf:type | schema:ScholarlyArticle |
90 | N0a104d923f2f4a7d87975b0365581163 | schema:issueNumber | 5 |
91 | ″ | rdf:type | schema:PublicationIssue |
92 | N0c84a5eae1d44e5daa68f7c01a051f02 | schema:name | Springer Nature - SN SciGraph project |
93 | ″ | rdf:type | schema:Organization |
94 | N289757e0f4364feb803cf29cfa005950 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
95 | ″ | schema:name | Peroxisomes |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | N35a1c2009dd94efc983c5d5bed941089 | rdf:first | sg:person.01212415532.62 |
98 | ″ | rdf:rest | rdf:nil |
99 | N6c1cc67c450e4f87a18a6c3b5066ee22 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
100 | ″ | schema:name | Animals |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | N9045e724c9264ed79bff24ad72d824c7 | schema:name | dimensions_id |
103 | ″ | schema:value | pub.1033819938 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | Na9894f92d67346d2b9a46285e006aaee | rdf:first | sg:person.01237376277.18 |
106 | ″ | rdf:rest | N35a1c2009dd94efc983c5d5bed941089 |
107 | Nb3b17496cf034685a23d8305b67fd78d | schema:name | pubmed_id |
108 | ″ | schema:value | 11331910 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | Nc1ea60aed7224882a5fd6fd09f513bb3 | schema:volumeNumber | 2 |
111 | ″ | rdf:type | schema:PublicationVolume |
112 | Ncedd3eaac76445609a684e8f31b738a0 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
113 | ″ | schema:name | Cell Membrane |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | Ne2dcd8058e6343e7b7296957b5978f38 | schema:name | doi |
116 | ″ | schema:value | 10.1038/35073063 |
117 | ″ | rdf:type | schema:PropertyValue |
118 | Ne7e6efaa37604c5a91defff8827b33d3 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
119 | ″ | schema:name | Humans |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Biological Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Biochemistry and Cell Biology |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | sg:journal.1023609 | schema:issn | 1471-0072 |
128 | ″ | ″ | 1471-0080 |
129 | ″ | schema:name | Nature Reviews Molecular Cell Biology |
130 | ″ | schema:publisher | Springer Nature |
131 | ″ | rdf:type | schema:Periodical |
132 | sg:person.01212415532.62 | schema:affiliation | grid-institutes:grid.17089.37 |
133 | ″ | schema:familyName | Rachubinski |
134 | ″ | schema:givenName | Richard A. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212415532.62 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.01237376277.18 | schema:affiliation | grid-institutes:grid.17089.37 |
138 | ″ | schema:familyName | Titorenko |
139 | ″ | schema:givenName | Vladimir I. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237376277.18 |
141 | ″ | rdf:type | schema:Person |
142 | sg:pub.10.1038/370111a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002529043 |
143 | ″ | ″ | https://doi.org/10.1038/370111a0 |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1038/ng0295-115 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028344814 |
146 | ″ | ″ | https://doi.org/10.1038/ng0295-115 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | grid-institutes:grid.17089.37 | schema:alternateName | Department of Cell Biology, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada |
149 | ″ | schema:name | Department of Cell Biology, University of Alberta, T6G 2H7, Edmonton, Alberta, Canada |
150 | ″ | rdf:type | schema:Organization |