Vortex dynamics in superconducting MgB2 and prospects for applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-03

AUTHORS

Y Bugoslavsky, G K Perkins, X Qi, L F Cohen, A D Caplin

ABSTRACT

The recently discovered superconductor magnesium diboride, MgB2, has a transition temperature, Tc, approaching 40 K, placing it intermediate between the families of low- and high-temperature superconductors. In practical applications, superconductors are permeated by quantized vortices of magnetic flux. When a supercurrent flows, there is dissipation of energy unless these vortices are 'pinned' in some way, and so inhibited from moving under the influence of the Lorentz force. Such vortex motion ultimately determines the critical current density, Jc, which the superconductor can support. Vortex behaviour has proved to be more complicated in high-temperature superconductors than in low-temperature superconductors and, although this has stimulated extensive theoretical and experimental research, it has also impeded applications. Here we describe the vortex behaviour in MgB2, as reflected in Jc and in the vortex creep rate, S, the latter being a measure of how fast the 'persistent' supercurrents decay. Our results show that naturally occurring grain boundaries are highly transparent to supercurrents, a desirable property which contrasts with the behaviour of the high-temperature superconductors. On the other hand, we observe a steep, practically deleterious decline in Jc with increasing magnetic field, which is likely to reflect the high degree of crystalline perfection in our samples, and hence a low vortex pinning energy. More... »

PAGES

563

Journal

TITLE

Nature

ISSUE

6828

VOLUME

410

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35069029

DOI

http://dx.doi.org/10.1038/35069029

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023886532

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11279489


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Centre for High Temperature Superconductivity, Blackett Laboratory, Imperial College, London, UK. y.bugoslav@ic.ac.uk"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bugoslavsky", 
        "givenName": "Y", 
        "id": "sg:person.01056627465.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056627465.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Perkins", 
        "givenName": "G K", 
        "id": "sg:person.016457703613.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016457703613.37"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Qi", 
        "givenName": "X", 
        "id": "sg:person.013643072001.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013643072001.14"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Cohen", 
        "givenName": "L F", 
        "id": "sg:person.01116004670.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116004670.62"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Caplin", 
        "givenName": "A D", 
        "id": "sg:person.014267362213.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014267362213.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001066551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001066551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013327508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013327508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00686099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016965565", 
          "https://doi.org/10.1007/bf00686099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00686099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016965565", 
          "https://doi.org/10.1007/bf00686099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/60/12/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020512914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1371239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023271432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/7/6/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032640590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048231159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048231159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052666736", 
          "https://doi.org/10.1038/35065039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052666736", 
          "https://doi.org/10.1038/35065039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052774821", 
          "https://doi.org/10.1038/35065559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052774821", 
          "https://doi.org/10.1038/35065559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.12551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.12551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.36.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.36.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838302"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-03", 
    "datePublishedReg": "2001-03-01", 
    "description": "The recently discovered superconductor magnesium diboride, MgB2, has a transition temperature, Tc, approaching 40 K, placing it intermediate between the families of low- and high-temperature superconductors. In practical applications, superconductors are permeated by quantized vortices of magnetic flux. When a supercurrent flows, there is dissipation of energy unless these vortices are 'pinned' in some way, and so inhibited from moving under the influence of the Lorentz force. Such vortex motion ultimately determines the critical current density, Jc, which the superconductor can support. Vortex behaviour has proved to be more complicated in high-temperature superconductors than in low-temperature superconductors and, although this has stimulated extensive theoretical and experimental research, it has also impeded applications. Here we describe the vortex behaviour in MgB2, as reflected in Jc and in the vortex creep rate, S, the latter being a measure of how fast the 'persistent' supercurrents decay. Our results show that naturally occurring grain boundaries are highly transparent to supercurrents, a desirable property which contrasts with the behaviour of the high-temperature superconductors. On the other hand, we observe a steep, practically deleterious decline in Jc with increasing magnetic field, which is likely to reflect the high degree of crystalline perfection in our samples, and hence a low vortex pinning energy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35069029", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6828", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "410"
      }
    ], 
    "name": "Vortex dynamics in superconducting MgB2 and prospects for applications", 
    "pagination": "563", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "71cc535091f355f2aaae4200dcc98e64d40e7a871dab59799f3303bf6302d1eb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11279489"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35069029"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023886532"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35069029", 
      "https://app.dimensions.ai/details/publication/pub.1023886532"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87079_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35069029"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35069029'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35069029'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35069029'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35069029'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      42 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35069029 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0a110bd6fc834a3c94a9df83e4b9d74e
4 schema:citation sg:pub.10.1007/bf00686099
5 sg:pub.10.1038/35065039
6 sg:pub.10.1038/35065559
7 https://doi.org/10.1063/1.1371239
8 https://doi.org/10.1088/0034-4885/60/12/003
9 https://doi.org/10.1088/0953-2048/7/6/014
10 https://doi.org/10.1103/physrevb.54.12551
11 https://doi.org/10.1103/physrevlett.61.2476
12 https://doi.org/10.1103/physrevlett.76.1920
13 https://doi.org/10.1103/physrevlett.83.1018
14 https://doi.org/10.1103/physrevlett.86.2420
15 https://doi.org/10.1103/physrevlett.86.2423
16 https://doi.org/10.1103/revmodphys.36.31
17 schema:datePublished 2001-03
18 schema:datePublishedReg 2001-03-01
19 schema:description The recently discovered superconductor magnesium diboride, MgB2, has a transition temperature, Tc, approaching 40 K, placing it intermediate between the families of low- and high-temperature superconductors. In practical applications, superconductors are permeated by quantized vortices of magnetic flux. When a supercurrent flows, there is dissipation of energy unless these vortices are 'pinned' in some way, and so inhibited from moving under the influence of the Lorentz force. Such vortex motion ultimately determines the critical current density, Jc, which the superconductor can support. Vortex behaviour has proved to be more complicated in high-temperature superconductors than in low-temperature superconductors and, although this has stimulated extensive theoretical and experimental research, it has also impeded applications. Here we describe the vortex behaviour in MgB2, as reflected in Jc and in the vortex creep rate, S, the latter being a measure of how fast the 'persistent' supercurrents decay. Our results show that naturally occurring grain boundaries are highly transparent to supercurrents, a desirable property which contrasts with the behaviour of the high-temperature superconductors. On the other hand, we observe a steep, practically deleterious decline in Jc with increasing magnetic field, which is likely to reflect the high degree of crystalline perfection in our samples, and hence a low vortex pinning energy.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N827a299871a6485a831cc147f525e72d
24 N82dbb90258b34fa2a8e449f4f19ebf15
25 sg:journal.1018957
26 schema:name Vortex dynamics in superconducting MgB2 and prospects for applications
27 schema:pagination 563
28 schema:productId N345ffd58c8494808b8b92131afef94d4
29 N4a9327788bed4a6a91e1017b6c991bea
30 N5e5d5e5ec09c4bd982bdea25b05dece4
31 Nbe32d60da5144d168069ebf1a5740f90
32 Nf4ea27d330334aab880005b9677f3b88
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023886532
34 https://doi.org/10.1038/35069029
35 schema:sdDatePublished 2019-04-11T12:21
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nb4f0aa273c72440e99d7f45ba7c583ad
38 schema:url https://www.nature.com/articles/35069029
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0a110bd6fc834a3c94a9df83e4b9d74e rdf:first sg:person.01056627465.06
43 rdf:rest N0b9ff9f11132498dafec2cf0b60782ac
44 N0b9ff9f11132498dafec2cf0b60782ac rdf:first sg:person.016457703613.37
45 rdf:rest N9ba387ab5a7746889664ff1289e03a47
46 N345ffd58c8494808b8b92131afef94d4 schema:name readcube_id
47 schema:value 71cc535091f355f2aaae4200dcc98e64d40e7a871dab59799f3303bf6302d1eb
48 rdf:type schema:PropertyValue
49 N4a9327788bed4a6a91e1017b6c991bea schema:name dimensions_id
50 schema:value pub.1023886532
51 rdf:type schema:PropertyValue
52 N5e5d5e5ec09c4bd982bdea25b05dece4 schema:name pubmed_id
53 schema:value 11279489
54 rdf:type schema:PropertyValue
55 N827a299871a6485a831cc147f525e72d schema:issueNumber 6828
56 rdf:type schema:PublicationIssue
57 N82dbb90258b34fa2a8e449f4f19ebf15 schema:volumeNumber 410
58 rdf:type schema:PublicationVolume
59 N8e3b6d8d422146228622c4e9c7a43f1e rdf:first sg:person.014267362213.96
60 rdf:rest rdf:nil
61 N9ba387ab5a7746889664ff1289e03a47 rdf:first sg:person.013643072001.14
62 rdf:rest Nd9576cf7665d45dfb305347eaa4b72a6
63 Nb4f0aa273c72440e99d7f45ba7c583ad schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nbe32d60da5144d168069ebf1a5740f90 schema:name nlm_unique_id
66 schema:value 0410462
67 rdf:type schema:PropertyValue
68 Nd9576cf7665d45dfb305347eaa4b72a6 rdf:first sg:person.01116004670.62
69 rdf:rest N8e3b6d8d422146228622c4e9c7a43f1e
70 Nf4ea27d330334aab880005b9677f3b88 schema:name doi
71 schema:value 10.1038/35069029
72 rdf:type schema:PropertyValue
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
77 schema:name Materials Engineering
78 rdf:type schema:DefinedTerm
79 sg:journal.1018957 schema:issn 0090-0028
80 1476-4687
81 schema:name Nature
82 rdf:type schema:Periodical
83 sg:person.01056627465.06 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
84 schema:familyName Bugoslavsky
85 schema:givenName Y
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056627465.06
87 rdf:type schema:Person
88 sg:person.01116004670.62 schema:familyName Cohen
89 schema:givenName L F
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116004670.62
91 rdf:type schema:Person
92 sg:person.013643072001.14 schema:familyName Qi
93 schema:givenName X
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013643072001.14
95 rdf:type schema:Person
96 sg:person.014267362213.96 schema:familyName Caplin
97 schema:givenName A D
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014267362213.96
99 rdf:type schema:Person
100 sg:person.016457703613.37 schema:familyName Perkins
101 schema:givenName G K
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016457703613.37
103 rdf:type schema:Person
104 sg:pub.10.1007/bf00686099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016965565
105 https://doi.org/10.1007/bf00686099
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/35065039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052666736
108 https://doi.org/10.1038/35065039
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/35065559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052774821
111 https://doi.org/10.1038/35065559
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.1371239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023271432
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/0034-4885/60/12/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020512914
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0953-2048/7/6/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032640590
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.54.12551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581434
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.61.2476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797947
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.76.1920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812719
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevlett.83.1018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048231159
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.86.2420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001066551
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.86.2423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013327508
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/revmodphys.36.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838302
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
134 schema:name Centre for High Temperature Superconductivity, Blackett Laboratory, Imperial College, London, UK. y.bugoslav@ic.ac.uk
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...