Evolution of nanoporosity in dealloying View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-03

AUTHORS

Jonah Erlebacher, Michael J. Aziz, Alain Karma, Nikolay Dimitrov, Karl Sieradzki

ABSTRACT

Dealloying is a common corrosion process during which an alloy is 'parted' by the selective dissolution of the most electrochemically active of its elements. This process results in the formation of a nanoporous sponge composed almost entirely of the more noble alloy constituents. Although considerable attention has been devoted to the morphological aspects of the dealloying process, its underlying physical mechanism has remained unclear. Here we propose a continuum model that is fully consistent with experiments and theoretical simulations of alloy dissolution, and demonstrate that nanoporosity in metals is due to an intrinsic dynamical pattern formation process. That is, pores form because the more noble atoms are chemically driven to aggregate into two-dimensional clusters by a phase separation process (spinodal decomposition) at the solid-electrolyte interface, and the surface area continuously increases owing to etching. Together, these processes evolve porosity with a characteristic length scale predicted by our continuum model. We expect that chemically tailored nanoporous gold made by dealloying Ag-Au should be suitable for sensor applications, particularly in a biomaterials context. More... »

PAGES

450

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35068529

DOI

http://dx.doi.org/10.1038/35068529

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020633318

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11260708


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "*Division of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erlebacher", 
        "givenName": "Jonah", 
        "id": "sg:person.0666067640.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666067640.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "*Division of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aziz", 
        "givenName": "Michael J.", 
        "id": "sg:person.01172732633.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172732633.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "\u2021Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karma", 
        "givenName": "Alain", 
        "id": "sg:person.01213444131.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213444131.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "\u00a7Department of Mechanical and Aerospace Engineering and Center for Solid State Sciences, Arizona State University, Tempe, Arizona 85287-6106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dimitrov", 
        "givenName": "Nikolay", 
        "id": "sg:person.0636442746.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636442746.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "\u00a7Department of Mechanical and Aerospace Engineering and Center for Solid State Sciences, Arizona State University, Tempe, Arizona 85287-6106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sieradzki", 
        "givenName": "Karl", 
        "id": "sg:person.01317325070.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317325070.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jcph.1994.1170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001607742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418618908209817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007505601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1838046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021052498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2426709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024467419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2781235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029847281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-938x(83)90092-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033664840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-938x(83)90092-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033664840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zaac.19211180127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038590128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2220924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041572265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/282597a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041920222", 
          "https://doi.org/10.1038/282597a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350216a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045980334", 
          "https://doi.org/10.1038/350216a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0684-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056556562", 
          "https://doi.org/10.1038/scientificamerican0684-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1722742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057789717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1730447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057796863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1744102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057806543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.30.3161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.30.3161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.1930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.1930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3225960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062107885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.263.5154.1708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062547888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511599798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667651"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-03", 
    "datePublishedReg": "2001-03-01", 
    "description": "Dealloying is a common corrosion process during which an alloy is 'parted' by the selective dissolution of the most electrochemically active of its elements. This process results in the formation of a nanoporous sponge composed almost entirely of the more noble alloy constituents. Although considerable attention has been devoted to the morphological aspects of the dealloying process, its underlying physical mechanism has remained unclear. Here we propose a continuum model that is fully consistent with experiments and theoretical simulations of alloy dissolution, and demonstrate that nanoporosity in metals is due to an intrinsic dynamical pattern formation process. That is, pores form because the more noble atoms are chemically driven to aggregate into two-dimensional clusters by a phase separation process (spinodal decomposition) at the solid-electrolyte interface, and the surface area continuously increases owing to etching. Together, these processes evolve porosity with a characteristic length scale predicted by our continuum model. We expect that chemically tailored nanoporous gold made by dealloying Ag-Au should be suitable for sensor applications, particularly in a biomaterials context.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35068529", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6827", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "410"
      }
    ], 
    "name": "Evolution of nanoporosity in dealloying", 
    "pagination": "450", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "625059744a433ae055da453a6ab18dd2518364a9bd971d9000d3f1f3e7f61a6d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11260708"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35068529"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020633318"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35068529", 
      "https://app.dimensions.ai/details/publication/pub.1020633318"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54015_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35068529"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35068529'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35068529'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35068529'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35068529'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35068529 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne6d1a7fa7714446498bf2af8b6aded09
4 schema:citation sg:pub.10.1038/282597a0
5 sg:pub.10.1038/350216a0
6 sg:pub.10.1038/scientificamerican0684-56
7 https://doi.org/10.1002/zaac.19211180127
8 https://doi.org/10.1006/jcph.1994.1170
9 https://doi.org/10.1016/0010-938x(83)90092-6
10 https://doi.org/10.1017/cbo9780511599798
11 https://doi.org/10.1063/1.1722742
12 https://doi.org/10.1063/1.1730447
13 https://doi.org/10.1063/1.1744102
14 https://doi.org/10.1080/01418618908209817
15 https://doi.org/10.1103/physreva.30.3161
16 https://doi.org/10.1103/physrevlett.51.1930
17 https://doi.org/10.1103/physrevlett.68.1168
18 https://doi.org/10.1103/physrevlett.82.121
19 https://doi.org/10.1115/1.3225960
20 https://doi.org/10.1126/science.263.5154.1708
21 https://doi.org/10.1149/1.1838046
22 https://doi.org/10.1149/1.2220924
23 https://doi.org/10.1149/1.2426709
24 https://doi.org/10.1149/1.2781235
25 schema:datePublished 2001-03
26 schema:datePublishedReg 2001-03-01
27 schema:description Dealloying is a common corrosion process during which an alloy is 'parted' by the selective dissolution of the most electrochemically active of its elements. This process results in the formation of a nanoporous sponge composed almost entirely of the more noble alloy constituents. Although considerable attention has been devoted to the morphological aspects of the dealloying process, its underlying physical mechanism has remained unclear. Here we propose a continuum model that is fully consistent with experiments and theoretical simulations of alloy dissolution, and demonstrate that nanoporosity in metals is due to an intrinsic dynamical pattern formation process. That is, pores form because the more noble atoms are chemically driven to aggregate into two-dimensional clusters by a phase separation process (spinodal decomposition) at the solid-electrolyte interface, and the surface area continuously increases owing to etching. Together, these processes evolve porosity with a characteristic length scale predicted by our continuum model. We expect that chemically tailored nanoporous gold made by dealloying Ag-Au should be suitable for sensor applications, particularly in a biomaterials context.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N5dc67f0b36ba42d083dbbbf9409ab96e
32 N82c0d8da46db4a67990ec9d3a0943fa2
33 sg:journal.1018957
34 schema:name Evolution of nanoporosity in dealloying
35 schema:pagination 450
36 schema:productId N0d9532dd8bbd446daf4407059b7e5217
37 N1caccbb93382467eb82c9d74136ecd4e
38 N572da98e631e4cd6b98f81e57deb339c
39 Nc96231e51a1c4ed2a566036de3d8fa8d
40 Nf52a77cb172e468c8973119a5701d44a
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633318
42 https://doi.org/10.1038/35068529
43 schema:sdDatePublished 2019-04-11T12:15
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N6bc590210ab646a88155df59eba8d745
46 schema:url https://www.nature.com/articles/35068529
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0d9532dd8bbd446daf4407059b7e5217 schema:name pubmed_id
51 schema:value 11260708
52 rdf:type schema:PropertyValue
53 N1950e00076ab4a36b5d21c8438921414 rdf:first sg:person.01213444131.17
54 rdf:rest N8d834ea5aefd4429a18c996999bd7125
55 N1caccbb93382467eb82c9d74136ecd4e schema:name readcube_id
56 schema:value 625059744a433ae055da453a6ab18dd2518364a9bd971d9000d3f1f3e7f61a6d
57 rdf:type schema:PropertyValue
58 N572da98e631e4cd6b98f81e57deb339c schema:name dimensions_id
59 schema:value pub.1020633318
60 rdf:type schema:PropertyValue
61 N5dc67f0b36ba42d083dbbbf9409ab96e schema:issueNumber 6827
62 rdf:type schema:PublicationIssue
63 N6bc590210ab646a88155df59eba8d745 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N82c0d8da46db4a67990ec9d3a0943fa2 schema:volumeNumber 410
66 rdf:type schema:PublicationVolume
67 N8d834ea5aefd4429a18c996999bd7125 rdf:first sg:person.0636442746.08
68 rdf:rest Ncbc1f4b741e44063b42f180806164204
69 Nb3e45950653543d789476d8f58ce5343 rdf:first sg:person.01172732633.23
70 rdf:rest N1950e00076ab4a36b5d21c8438921414
71 Nc96231e51a1c4ed2a566036de3d8fa8d schema:name nlm_unique_id
72 schema:value 0410462
73 rdf:type schema:PropertyValue
74 Ncbc1f4b741e44063b42f180806164204 rdf:first sg:person.01317325070.40
75 rdf:rest rdf:nil
76 Ne6d1a7fa7714446498bf2af8b6aded09 rdf:first sg:person.0666067640.92
77 rdf:rest Nb3e45950653543d789476d8f58ce5343
78 Nf52a77cb172e468c8973119a5701d44a schema:name doi
79 schema:value 10.1038/35068529
80 rdf:type schema:PropertyValue
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
85 schema:name Materials Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1018957 schema:issn 0090-0028
88 1476-4687
89 schema:name Nature
90 rdf:type schema:Periodical
91 sg:person.01172732633.23 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
92 schema:familyName Aziz
93 schema:givenName Michael J.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172732633.23
95 rdf:type schema:Person
96 sg:person.01213444131.17 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
97 schema:familyName Karma
98 schema:givenName Alain
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213444131.17
100 rdf:type schema:Person
101 sg:person.01317325070.40 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
102 schema:familyName Sieradzki
103 schema:givenName Karl
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317325070.40
105 rdf:type schema:Person
106 sg:person.0636442746.08 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
107 schema:familyName Dimitrov
108 schema:givenName Nikolay
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636442746.08
110 rdf:type schema:Person
111 sg:person.0666067640.92 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
112 schema:familyName Erlebacher
113 schema:givenName Jonah
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666067640.92
115 rdf:type schema:Person
116 sg:pub.10.1038/282597a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041920222
117 https://doi.org/10.1038/282597a0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/350216a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045980334
120 https://doi.org/10.1038/350216a0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/scientificamerican0684-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056556562
123 https://doi.org/10.1038/scientificamerican0684-56
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/zaac.19211180127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038590128
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1006/jcph.1994.1170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001607742
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0010-938x(83)90092-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033664840
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1017/cbo9780511599798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667651
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.1722742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057789717
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.1730447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057796863
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.1744102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057806543
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/01418618908209817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007505601
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreva.30.3161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060472872
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.51.1930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789252
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.68.1168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804074
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.82.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818903
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1115/1.3225960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062107885
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.263.5154.1708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062547888
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1149/1.1838046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021052498
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1149/1.2220924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041572265
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1149/1.2426709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024467419
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1149/1.2781235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029847281
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
162 schema:name §Department of Mechanical and Aerospace Engineering and Center for Solid State Sciences, Arizona State University, Tempe, Arizona 85287-6106, USA
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.261112.7 schema:alternateName Northeastern University
165 schema:name ‡Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
168 schema:name *Division of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...