Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-03

AUTHORS

F J Jedema, A T Filip, B J van Wees

ABSTRACT

Finding a means to generate, control and use spin-polarized currents represents an important challenge for spin-based electronics, or 'spintronics'. Spin currents and the associated phenomenon of spin accumulation can be realized by driving a current from a ferromagnetic electrode into a non-magnetic metal or semiconductor. This was first demonstrated over 15 years ago in a spin injection experiment on a single crystal aluminium bar at temperatures below 77 K. Recent experiments have demonstrated successful optical detection of spin injection in semiconductors, using either optical injection by circularly polarized light or electrical injection from a magnetic semiconductor. However, it has not been possible to achieve fully electrical spin injection and detection at room temperature. Here we report room-temperature electrical injection and detection of spin currents and observe spin accumulation in an all-metal lateral mesoscopic spin valve, where ferromagnetic electrodes are used to drive a spin-polarized current into crossed copper strips. We anticipate that larger signals should be obtainable by optimizing the choice of materials and device geometry. More... »

PAGES

345

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35066533

DOI

http://dx.doi.org/10.1038/35066533

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006965625

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11268205


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Applied Physics and Materials Science Centre, University of Groningen, The Netherlands. jedema@phys.rug.nl"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jedema", 
        "givenName": "F J", 
        "id": "sg:person.0651235715.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651235715.54"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Filip", 
        "givenName": "A T", 
        "id": "sg:person.0717351115.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717351115.30"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "van Wees", 
        "givenName": "B J", 
        "id": "sg:person.01247476432.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247476432.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.62.5700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000569857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.5700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000569857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(97)00061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011095493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.2481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011435486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.2481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011435486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018739700101518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015533175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90105-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020262369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90105-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020262369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/45502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028495183", 
          "https://doi.org/10.1038/45502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/45502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028495183", 
          "https://doi.org/10.1038/45502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033723558", 
          "https://doi.org/10.1038/16420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033723558", 
          "https://doi.org/10.1038/16420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/10/27/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051668939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/45509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052328360", 
          "https://doi.org/10.1038/45509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/45509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052328360", 
          "https://doi.org/10.1038/45509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058126960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.6554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.6554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.3296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.3296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.9996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.9996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.260.5106.320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062546128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5394.1660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563354"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-03", 
    "datePublishedReg": "2001-03-01", 
    "description": "Finding a means to generate, control and use spin-polarized currents represents an important challenge for spin-based electronics, or 'spintronics'. Spin currents and the associated phenomenon of spin accumulation can be realized by driving a current from a ferromagnetic electrode into a non-magnetic metal or semiconductor. This was first demonstrated over 15 years ago in a spin injection experiment on a single crystal aluminium bar at temperatures below 77 K. Recent experiments have demonstrated successful optical detection of spin injection in semiconductors, using either optical injection by circularly polarized light or electrical injection from a magnetic semiconductor. However, it has not been possible to achieve fully electrical spin injection and detection at room temperature. Here we report room-temperature electrical injection and detection of spin currents and observe spin accumulation in an all-metal lateral mesoscopic spin valve, where ferromagnetic electrodes are used to drive a spin-polarized current into crossed copper strips. We anticipate that larger signals should be obtainable by optimizing the choice of materials and device geometry.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35066533", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6826", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "410"
      }
    ], 
    "name": "Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve", 
    "pagination": "345", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "212e96ee1b29e13148162fea8990bdf2739d7f3ee35454fbfd3721f2ad8dd08b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11268205"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35066533"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006965625"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35066533", 
      "https://app.dimensions.ai/details/publication/pub.1006965625"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54002_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35066533"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35066533'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35066533'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35066533'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35066533'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35066533 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne8156f918bc54faf81c7772e10205f49
4 schema:citation sg:pub.10.1038/16420
5 sg:pub.10.1038/45502
6 sg:pub.10.1038/45509
7 https://doi.org/10.1016/0370-1573(94)90105-8
8 https://doi.org/10.1016/s0304-8853(97)00061-9
9 https://doi.org/10.1063/1.881459
10 https://doi.org/10.1080/00018739700101518
11 https://doi.org/10.1088/0953-8984/10/27/005
12 https://doi.org/10.1103/physrevb.48.7099
13 https://doi.org/10.1103/physrevb.53.6554
14 https://doi.org/10.1103/physrevb.56.3296
15 https://doi.org/10.1103/physrevb.60.477
16 https://doi.org/10.1103/physrevb.62.5700
17 https://doi.org/10.1103/physrevb.62.9996
18 https://doi.org/10.1103/physrevlett.55.1790
19 https://doi.org/10.1103/physrevlett.58.2271
20 https://doi.org/10.1103/physrevlett.70.2142
21 https://doi.org/10.1103/physrevlett.72.3274
22 https://doi.org/10.1103/physrevlett.84.1015
23 https://doi.org/10.1103/physrevlett.84.2481
24 https://doi.org/10.1103/physrevlett.84.3149
25 https://doi.org/10.1103/physrevlett.84.983
26 https://doi.org/10.1126/science.260.5106.320
27 https://doi.org/10.1126/science.282.5394.1660
28 schema:datePublished 2001-03
29 schema:datePublishedReg 2001-03-01
30 schema:description Finding a means to generate, control and use spin-polarized currents represents an important challenge for spin-based electronics, or 'spintronics'. Spin currents and the associated phenomenon of spin accumulation can be realized by driving a current from a ferromagnetic electrode into a non-magnetic metal or semiconductor. This was first demonstrated over 15 years ago in a spin injection experiment on a single crystal aluminium bar at temperatures below 77 K. Recent experiments have demonstrated successful optical detection of spin injection in semiconductors, using either optical injection by circularly polarized light or electrical injection from a magnetic semiconductor. However, it has not been possible to achieve fully electrical spin injection and detection at room temperature. Here we report room-temperature electrical injection and detection of spin currents and observe spin accumulation in an all-metal lateral mesoscopic spin valve, where ferromagnetic electrodes are used to drive a spin-polarized current into crossed copper strips. We anticipate that larger signals should be obtainable by optimizing the choice of materials and device geometry.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N91158f87e982411480823f1d788edd30
35 Ne86dbcdef0414d84895a1bb3cb6bc8eb
36 sg:journal.1018957
37 schema:name Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve
38 schema:pagination 345
39 schema:productId N2f0248bde4c347f984e894789ed4466c
40 N416524c860954b53bf9ca9ebb5a13f43
41 N740b9bf28a0f4a3eb5ad7703e1f8d31b
42 Nb3dc34cc3de842c7b5580ab75aaa29fc
43 Neac8ad08a2184410b548f8c164bbd5f1
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006965625
45 https://doi.org/10.1038/35066533
46 schema:sdDatePublished 2019-04-11T12:13
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N637d2123f7c344e8bed18c8c6554ef47
49 schema:url https://www.nature.com/articles/35066533
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0e94eacce0c94951bfac8138812a1638 rdf:first sg:person.0717351115.30
54 rdf:rest N2acb9cb81cc44cc8a3edf468151749b6
55 N2acb9cb81cc44cc8a3edf468151749b6 rdf:first sg:person.01247476432.53
56 rdf:rest rdf:nil
57 N2f0248bde4c347f984e894789ed4466c schema:name dimensions_id
58 schema:value pub.1006965625
59 rdf:type schema:PropertyValue
60 N416524c860954b53bf9ca9ebb5a13f43 schema:name pubmed_id
61 schema:value 11268205
62 rdf:type schema:PropertyValue
63 N637d2123f7c344e8bed18c8c6554ef47 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N740b9bf28a0f4a3eb5ad7703e1f8d31b schema:name doi
66 schema:value 10.1038/35066533
67 rdf:type schema:PropertyValue
68 N91158f87e982411480823f1d788edd30 schema:volumeNumber 410
69 rdf:type schema:PublicationVolume
70 Nb3dc34cc3de842c7b5580ab75aaa29fc schema:name nlm_unique_id
71 schema:value 0410462
72 rdf:type schema:PropertyValue
73 Ne8156f918bc54faf81c7772e10205f49 rdf:first sg:person.0651235715.54
74 rdf:rest N0e94eacce0c94951bfac8138812a1638
75 Ne86dbcdef0414d84895a1bb3cb6bc8eb schema:issueNumber 6826
76 rdf:type schema:PublicationIssue
77 Neac8ad08a2184410b548f8c164bbd5f1 schema:name readcube_id
78 schema:value 212e96ee1b29e13148162fea8990bdf2739d7f3ee35454fbfd3721f2ad8dd08b
79 rdf:type schema:PropertyValue
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1018957 schema:issn 0090-0028
87 1476-4687
88 schema:name Nature
89 rdf:type schema:Periodical
90 sg:person.01247476432.53 schema:familyName van Wees
91 schema:givenName B J
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247476432.53
93 rdf:type schema:Person
94 sg:person.0651235715.54 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
95 schema:familyName Jedema
96 schema:givenName F J
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651235715.54
98 rdf:type schema:Person
99 sg:person.0717351115.30 schema:familyName Filip
100 schema:givenName A T
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717351115.30
102 rdf:type schema:Person
103 sg:pub.10.1038/16420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033723558
104 https://doi.org/10.1038/16420
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/45502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028495183
107 https://doi.org/10.1038/45502
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/45509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052328360
110 https://doi.org/10.1038/45509
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0370-1573(94)90105-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020262369
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0304-8853(97)00061-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011095493
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.881459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058126960
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1080/00018739700101518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015533175
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0953-8984/10/27/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051668939
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.48.7099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568994
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.53.6554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060580502
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.56.3296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060586100
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.60.477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060594154
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.62.5700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000569857
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.62.9996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598228
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.55.1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792184
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.58.2271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795039
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.70.2142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806632
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.72.3274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809048
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.84.1015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820659
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.84.2481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011435486
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.84.3149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331710
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.84.983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821609
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1126/science.260.5106.320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062546128
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.282.5394.1660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563354
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
155 schema:name Department of Applied Physics and Materials Science Centre, University of Groningen, The Netherlands. jedema@phys.rug.nl
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...