A chiroselective peptide replicator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-02

AUTHORS

A Saghatelian, Y Yokobayashi, K Soltani, M R Ghadiri

ABSTRACT

The origin of homochirality in living systems is often attributed to the generation of enantiomeric differences in a pool of chiral prebiotic molecules, but none of the possible physiochemical processes considered can produce the significant imbalance required if homochiral biopolymers are to result from simple coupling of suitable precursor molecules. This implies a central role either for additional processes that can selectively amplify an initially minute enantiomeric difference in the starting material, or for a nonenzymatic process by which biopolymers undergo chiroselective molecular replication. Given that molecular self-replication and the capacity for selection are necessary conditions for the emergence of life, chiroselective replication of biopolymers seems a particularly attractive process for explaining homochirality in nature. Here we report that a 32-residue peptide replicator, designed according to our earlier principles, is capable of efficiently amplifying homochiral products from a racemic mixture of peptide fragments through a chiroselective autocatalytic cycle. The chiroselective amplification process discriminates between structures possessing even single stereochemical mutations within otherwise homochiral sequences. Moreover, the system exhibits a dynamic stereochemical 'editing' function; in contrast to the previously observed error correction, it makes use of heterochiral sequences that arise through uncatalysed background reactions to catalyse the production of the homochiral product. These results support the idea that self-replicating polypeptides could have played a key role in the origin of homochirality on Earth. More... »

PAGES

797

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35057238

DOI

http://dx.doi.org/10.1038/35057238

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033632917

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11236988


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Biosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Fragments", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stereoisomerism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scripps Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.214007.0", 
          "name": [
            "Department of Chemistry, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saghatelian", 
        "givenName": "A", 
        "id": "sg:person.01137512221.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137512221.01"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Yokobayashi", 
        "givenName": "Y", 
        "id": "sg:person.01275562441.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275562441.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Soltani", 
        "givenName": "K", 
        "type": "Person"
      }, 
      {
        "familyName": "Ghadiri", 
        "givenName": "M R", 
        "id": "sg:person.01333016160.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333016160.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/chem.19970030706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000938591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chir.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005006158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/310161a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005053346", 
          "https://doi.org/10.1038/310161a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00928003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007868474", 
          "https://doi.org/10.1007/bf00928003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382525a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015429447", 
          "https://doi.org/10.1038/382525a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3773(19980202)37:1/2<126::aid-anie126>3.0.co;2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015702392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chir.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018281384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/310602a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019734810", 
          "https://doi.org/10.1038/310602a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3002(53)90082-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020481190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3002(53)90082-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020481190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/378767a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023946847", 
          "https://doi.org/10.1038/378767a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/314438a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025822660", 
          "https://doi.org/10.1038/314438a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01809580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032864904", 
          "https://doi.org/10.1007/bf01809580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01809580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032864904", 
          "https://doi.org/10.1007/bf01809580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4831-9994-8.50008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039696716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/374594a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042407604", 
          "https://doi.org/10.1038/374594a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c39870001817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043587406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/37569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046895906", 
          "https://doi.org/10.1038/37569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/37569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046895906", 
          "https://doi.org/10.1038/37569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9940524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050358957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9940524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050358957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1074-5521(97)90074-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050743197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1520-636x(1998)10:1/2<24::aid-chir5>3.3.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054226388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1520-636x(1998)10:1/2<35::aid-chir7>3.3.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054226390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00040a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055158352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja963563c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055866230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja963563c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055866230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9836489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055871007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.250.4983.975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062541059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5302.951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062555780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7973629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062650753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8248779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653809"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-02", 
    "datePublishedReg": "2001-02-01", 
    "description": "The origin of homochirality in living systems is often attributed to the generation of enantiomeric differences in a pool of chiral prebiotic molecules, but none of the possible physiochemical processes considered can produce the significant imbalance required if homochiral biopolymers are to result from simple coupling of suitable precursor molecules. This implies a central role either for additional processes that can selectively amplify an initially minute enantiomeric difference in the starting material, or for a nonenzymatic process by which biopolymers undergo chiroselective molecular replication. Given that molecular self-replication and the capacity for selection are necessary conditions for the emergence of life, chiroselective replication of biopolymers seems a particularly attractive process for explaining homochirality in nature. Here we report that a 32-residue peptide replicator, designed according to our earlier principles, is capable of efficiently amplifying homochiral products from a racemic mixture of peptide fragments through a chiroselective autocatalytic cycle. The chiroselective amplification process discriminates between structures possessing even single stereochemical mutations within otherwise homochiral sequences. Moreover, the system exhibits a dynamic stereochemical 'editing' function; in contrast to the previously observed error correction, it makes use of heterochiral sequences that arise through uncatalysed background reactions to catalyse the production of the homochiral product. These results support the idea that self-replicating polypeptides could have played a key role in the origin of homochirality on Earth.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35057238", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6822", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "409"
      }
    ], 
    "name": "A chiroselective peptide replicator", 
    "pagination": "797", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a03724b22c9f67fe2e5466572aa4391b2622f1f64247229038985d6b16c8089b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11236988"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35057238"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033632917"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35057238", 
      "https://app.dimensions.ai/details/publication/pub.1033632917"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35057238"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35057238'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35057238'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35057238'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35057238'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      67 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35057238 schema:about N2ea86a5c8cd44f3cadfb69cec6677f08
2 N30e69d02cb42455eb187af6df0f430ca
3 N5449e484480747a185948fa5ac7253f3
4 N64f411ffd7b94f8f976ac215254885cd
5 N6bd9fffce2c84643ad782e8dc6558e80
6 N8dfbb7f590584b03b57bd84c5d935461
7 N90829ef27a7447d1be13c40bf997d271
8 N99e8ccb239504782bdd858bd985febc2
9 Na305c218b9de46ca8c47af8c5c06bfa4
10 Nb3dd643a8dfc4e788cc61316f1563267
11 Nd3729da6fef14b5b840062bec0856285
12 anzsrc-for:03
13 anzsrc-for:0303
14 schema:author Nf953db0bed3b4c5eb8339f20db1dae24
15 schema:citation sg:pub.10.1007/bf00928003
16 sg:pub.10.1007/bf01809580
17 sg:pub.10.1038/310161a0
18 sg:pub.10.1038/310602a0
19 sg:pub.10.1038/314438a0
20 sg:pub.10.1038/374594a0
21 sg:pub.10.1038/37569
22 sg:pub.10.1038/378767a0
23 sg:pub.10.1038/382525a0
24 https://doi.org/10.1002/(sici)1520-636x(1998)10:1/2<24::aid-chir5>3.3.co;2-p
25 https://doi.org/10.1002/(sici)1520-636x(1998)10:1/2<35::aid-chir7>3.3.co;2-f
26 https://doi.org/10.1002/(sici)1521-3773(19980202)37:1/2<126::aid-anie126>3.0.co;2-4
27 https://doi.org/10.1002/chem.19970030706
28 https://doi.org/10.1002/chir.5
29 https://doi.org/10.1002/chir.7
30 https://doi.org/10.1016/0006-3002(53)90082-1
31 https://doi.org/10.1016/b978-1-4831-9994-8.50008-9
32 https://doi.org/10.1016/s1074-5521(97)90074-0
33 https://doi.org/10.1021/bi00040a005
34 https://doi.org/10.1021/ja963563c
35 https://doi.org/10.1021/ja9836489
36 https://doi.org/10.1021/ja9940524
37 https://doi.org/10.1039/c39870001817
38 https://doi.org/10.1126/science.250.4983.975
39 https://doi.org/10.1126/science.275.5302.951
40 https://doi.org/10.1126/science.7973629
41 https://doi.org/10.1126/science.8248779
42 schema:datePublished 2001-02
43 schema:datePublishedReg 2001-02-01
44 schema:description The origin of homochirality in living systems is often attributed to the generation of enantiomeric differences in a pool of chiral prebiotic molecules, but none of the possible physiochemical processes considered can produce the significant imbalance required if homochiral biopolymers are to result from simple coupling of suitable precursor molecules. This implies a central role either for additional processes that can selectively amplify an initially minute enantiomeric difference in the starting material, or for a nonenzymatic process by which biopolymers undergo chiroselective molecular replication. Given that molecular self-replication and the capacity for selection are necessary conditions for the emergence of life, chiroselective replication of biopolymers seems a particularly attractive process for explaining homochirality in nature. Here we report that a 32-residue peptide replicator, designed according to our earlier principles, is capable of efficiently amplifying homochiral products from a racemic mixture of peptide fragments through a chiroselective autocatalytic cycle. The chiroselective amplification process discriminates between structures possessing even single stereochemical mutations within otherwise homochiral sequences. Moreover, the system exhibits a dynamic stereochemical 'editing' function; in contrast to the previously observed error correction, it makes use of heterochiral sequences that arise through uncatalysed background reactions to catalyse the production of the homochiral product. These results support the idea that self-replicating polypeptides could have played a key role in the origin of homochirality on Earth.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N34216e740f5f46b5b2fdce02f116ba5d
49 N9f088e32fd6843e193a5c3ae4038ff05
50 sg:journal.1018957
51 schema:name A chiroselective peptide replicator
52 schema:pagination 797
53 schema:productId N7c6ea9f2833f4073ad39cbd1e2f025fe
54 N9507b7f5c2774a2888c8f89dcfec26d4
55 Nb8faa806d04f4feebb68126337caee4e
56 Ncda6c8ebd6b1446c878d8a06144ecdd1
57 Ne412e4abc13f4cc8981c1425bdce9885
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033632917
59 https://doi.org/10.1038/35057238
60 schema:sdDatePublished 2019-04-11T12:24
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nb632cc714cf444a587cc6113df038460
63 schema:url https://www.nature.com/articles/35057238
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N2ea86a5c8cd44f3cadfb69cec6677f08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Peptide Fragments
69 rdf:type schema:DefinedTerm
70 N30e69d02cb42455eb187af6df0f430ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Peptide Biosynthesis
72 rdf:type schema:DefinedTerm
73 N34216e740f5f46b5b2fdce02f116ba5d schema:volumeNumber 409
74 rdf:type schema:PublicationVolume
75 N4c010ef570974f91a0d5a21757a3e63e rdf:first sg:person.01275562441.06
76 rdf:rest Nfbe28a5c86334d49b03eaad066ceea1f
77 N5449e484480747a185948fa5ac7253f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Thermodynamics
79 rdf:type schema:DefinedTerm
80 N59ae5c19133240529d7e9bce08564c1a rdf:first sg:person.01333016160.49
81 rdf:rest rdf:nil
82 N64f411ffd7b94f8f976ac215254885cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Evolution, Chemical
84 rdf:type schema:DefinedTerm
85 N6bd9fffce2c84643ad782e8dc6558e80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Protein Conformation
87 rdf:type schema:DefinedTerm
88 N7c6ea9f2833f4073ad39cbd1e2f025fe schema:name doi
89 schema:value 10.1038/35057238
90 rdf:type schema:PropertyValue
91 N8dfbb7f590584b03b57bd84c5d935461 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Stereoisomerism
93 rdf:type schema:DefinedTerm
94 N90829ef27a7447d1be13c40bf997d271 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Catalysis
96 rdf:type schema:DefinedTerm
97 N9507b7f5c2774a2888c8f89dcfec26d4 schema:name readcube_id
98 schema:value a03724b22c9f67fe2e5466572aa4391b2622f1f64247229038985d6b16c8089b
99 rdf:type schema:PropertyValue
100 N99e8ccb239504782bdd858bd985febc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Mutation
102 rdf:type schema:DefinedTerm
103 N9f088e32fd6843e193a5c3ae4038ff05 schema:issueNumber 6822
104 rdf:type schema:PublicationIssue
105 Na305c218b9de46ca8c47af8c5c06bfa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Peptides
107 rdf:type schema:DefinedTerm
108 Nb3dd643a8dfc4e788cc61316f1563267 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Molecular Sequence Data
110 rdf:type schema:DefinedTerm
111 Nb632cc714cf444a587cc6113df038460 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Nb8faa806d04f4feebb68126337caee4e schema:name nlm_unique_id
114 schema:value 0410462
115 rdf:type schema:PropertyValue
116 Ncda6c8ebd6b1446c878d8a06144ecdd1 schema:name dimensions_id
117 schema:value pub.1033632917
118 rdf:type schema:PropertyValue
119 Nd3729da6fef14b5b840062bec0856285 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Amino Acid Sequence
121 rdf:type schema:DefinedTerm
122 Ne412e4abc13f4cc8981c1425bdce9885 schema:name pubmed_id
123 schema:value 11236988
124 rdf:type schema:PropertyValue
125 Nf953db0bed3b4c5eb8339f20db1dae24 rdf:first sg:person.01137512221.01
126 rdf:rest N4c010ef570974f91a0d5a21757a3e63e
127 Nfbe28a5c86334d49b03eaad066ceea1f rdf:first Nfec02ed9cd374130976621464a3d6b46
128 rdf:rest N59ae5c19133240529d7e9bce08564c1a
129 Nfec02ed9cd374130976621464a3d6b46 schema:familyName Soltani
130 schema:givenName K
131 rdf:type schema:Person
132 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
133 schema:name Chemical Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
136 schema:name Macromolecular and Materials Chemistry
137 rdf:type schema:DefinedTerm
138 sg:journal.1018957 schema:issn 0090-0028
139 1476-4687
140 schema:name Nature
141 rdf:type schema:Periodical
142 sg:person.01137512221.01 schema:affiliation https://www.grid.ac/institutes/grid.214007.0
143 schema:familyName Saghatelian
144 schema:givenName A
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137512221.01
146 rdf:type schema:Person
147 sg:person.01275562441.06 schema:familyName Yokobayashi
148 schema:givenName Y
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275562441.06
150 rdf:type schema:Person
151 sg:person.01333016160.49 schema:familyName Ghadiri
152 schema:givenName M R
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333016160.49
154 rdf:type schema:Person
155 sg:pub.10.1007/bf00928003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007868474
156 https://doi.org/10.1007/bf00928003
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/bf01809580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032864904
159 https://doi.org/10.1007/bf01809580
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/310161a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005053346
162 https://doi.org/10.1038/310161a0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/310602a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019734810
165 https://doi.org/10.1038/310602a0
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/314438a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025822660
168 https://doi.org/10.1038/314438a0
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/374594a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042407604
171 https://doi.org/10.1038/374594a0
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/37569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046895906
174 https://doi.org/10.1038/37569
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/378767a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023946847
177 https://doi.org/10.1038/378767a0
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/382525a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015429447
180 https://doi.org/10.1038/382525a0
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/(sici)1520-636x(1998)10:1/2<24::aid-chir5>3.3.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1054226388
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/(sici)1520-636x(1998)10:1/2<35::aid-chir7>3.3.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1054226390
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/(sici)1521-3773(19980202)37:1/2<126::aid-anie126>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015702392
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/chem.19970030706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000938591
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/chir.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018281384
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/chir.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005006158
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/0006-3002(53)90082-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020481190
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/b978-1-4831-9994-8.50008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039696716
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s1074-5521(97)90074-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050743197
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/bi00040a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055158352
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/ja963563c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055866230
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/ja9836489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055871007
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/ja9940524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050358957
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1039/c39870001817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043587406
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.250.4983.975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062541059
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.275.5302.951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555780
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.7973629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062650753
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.8248779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653809
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.214007.0 schema:alternateName Scripps Research Institute
219 schema:name Department of Chemistry, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...