An abrupt climate event in a coupled ocean–atmosphere simulation without external forcing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-01

AUTHORS

Alex Hall, Ronald J. Stouffer

ABSTRACT

Temperature reconstructions from the North Atlantic region indicate frequent abrupt and severe climate fluctuations during the last glacial and Holocene periods. The driving forces for these events are unclear and coupled atmosphere-ocean models of global circulation have only simulated such events by inserting large amounts of fresh water into the northern North Atlantic Ocean. Here we report a drastic cooling event in a 15,000-yr simulation of global circulation with present-day climate conditions without the use of such external forcing. In our simulation, the annual average surface temperature near southern Greenland spontaneously fell 6-10 standard deviations below its mean value for a period of 30-40 yr. The event was triggered by a persistent northwesterly wind that transported large amounts of buoyant cold and fresh water into the northern North Atlantic Ocean. Oceanic convection shut down in response to this flow, concentrating the entire cooling of the northern North Atlantic by the colder atmosphere in the uppermost ocean layer. Given the similarity between our simulation and observed records of rapid cooling events, our results indicate that internal atmospheric variability alone could have generated the extreme climate disruptions in this region. More... »

PAGES

171

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35051544

DOI

http://dx.doi.org/10.1038/35051544

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010025362

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11196636


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lamont-Doherty Earth Observatory", 
          "id": "https://www.grid.ac/institutes/grid.473157.3", 
          "name": [
            "*Lamont-Doherty Earth Observatory , Palisades, New York 10964, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall", 
        "givenName": "Alex", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Fluid Dynamics Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482795.5", 
          "name": [
            "\u2020Geophysical Fluid Dynamics Laboratory , Princeton, New Jersey 08542, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stouffer", 
        "givenName": "Ronald J.", 
        "id": "sg:person.015367614247.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367614247.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004954487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jc084ic05p02503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008986581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1995)025<1350:atttca>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010872215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6611(88)90049-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012522835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6611(88)90049-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012522835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/378165a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019547367", 
          "https://doi.org/10.1038/378165a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1988)001<0841:tseoac>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023990689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1996)009<0376:lfvosa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024880632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2000)013<1018:amitec>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029039497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96gl03927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031519813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1994)007<0005:mcroac>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032344432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1992)005<0105:troaco>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033366210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999jc900146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034584323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96pa03932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034677808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1999)012<2224:roacoa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036661878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5341.1257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037112010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1982)110<0625:adotgg>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043619254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95gl02651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044293527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/359311a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047351475", 
          "https://doi.org/10.1038/359311a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95gl02670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048617996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1993)006<1993:ivottc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050865955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.218.4579.1273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062525899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.269.5224.676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062550625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5474.2198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062569996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063452141"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-01", 
    "datePublishedReg": "2001-01-01", 
    "description": "Temperature reconstructions from the North Atlantic region indicate frequent abrupt and severe climate fluctuations during the last glacial and Holocene periods. The driving forces for these events are unclear and coupled atmosphere-ocean models of global circulation have only simulated such events by inserting large amounts of fresh water into the northern North Atlantic Ocean. Here we report a drastic cooling event in a 15,000-yr simulation of global circulation with present-day climate conditions without the use of such external forcing. In our simulation, the annual average surface temperature near southern Greenland spontaneously fell 6-10 standard deviations below its mean value for a period of 30-40 yr. The event was triggered by a persistent northwesterly wind that transported large amounts of buoyant cold and fresh water into the northern North Atlantic Ocean. Oceanic convection shut down in response to this flow, concentrating the entire cooling of the northern North Atlantic by the colder atmosphere in the uppermost ocean layer. Given the similarity between our simulation and observed records of rapid cooling events, our results indicate that internal atmospheric variability alone could have generated the extreme climate disruptions in this region.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35051544", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6817", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "409"
      }
    ], 
    "name": "An abrupt climate event in a coupled ocean\u2013atmosphere simulation\nwithout external forcing", 
    "pagination": "171", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2fc31a37197cfbb51b7eaf6a685e0beee41bea3acfbd3a93f6fe752628c8532d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11196636"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35051544"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010025362"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35051544", 
      "https://app.dimensions.ai/details/publication/pub.1010025362"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35051544"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35051544'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35051544'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35051544'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35051544'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35051544 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Ndf02c0a3e86142fcb46bfd70440afe35
4 schema:citation sg:pub.10.1038/359311a0
5 sg:pub.10.1038/378165a0
6 https://doi.org/10.1016/0079-6611(88)90049-3
7 https://doi.org/10.1029/1999jc900146
8 https://doi.org/10.1029/95gl02651
9 https://doi.org/10.1029/95gl02670
10 https://doi.org/10.1029/96gl03927
11 https://doi.org/10.1029/96pa03932
12 https://doi.org/10.1029/jc084ic05p02503
13 https://doi.org/10.1126/science.218.4579.1273
14 https://doi.org/10.1126/science.269.5224.676
15 https://doi.org/10.1126/science.278.5341.1257
16 https://doi.org/10.1126/science.288.5474.2198
17 https://doi.org/10.1175/1520-0442(1988)001<0841:tseoac>2.0.co;2
18 https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2
19 https://doi.org/10.1175/1520-0442(1992)005<0105:troaco>2.0.co;2
20 https://doi.org/10.1175/1520-0442(1993)006<1993:ivottc>2.0.co;2
21 https://doi.org/10.1175/1520-0442(1994)007<0005:mcroac>2.0.co;2
22 https://doi.org/10.1175/1520-0442(1996)009<0376:lfvosa>2.0.co;2
23 https://doi.org/10.1175/1520-0442(1999)012<2224:roacoa>2.0.co;2
24 https://doi.org/10.1175/1520-0442(2000)013<1018:amitec>2.0.co;2
25 https://doi.org/10.1175/1520-0485(1995)025<1350:atttca>2.0.co;2
26 https://doi.org/10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2
27 https://doi.org/10.1175/1520-0493(1982)110<0625:adotgg>2.0.co;2
28 schema:datePublished 2001-01
29 schema:datePublishedReg 2001-01-01
30 schema:description Temperature reconstructions from the North Atlantic region indicate frequent abrupt and severe climate fluctuations during the last glacial and Holocene periods. The driving forces for these events are unclear and coupled atmosphere-ocean models of global circulation have only simulated such events by inserting large amounts of fresh water into the northern North Atlantic Ocean. Here we report a drastic cooling event in a 15,000-yr simulation of global circulation with present-day climate conditions without the use of such external forcing. In our simulation, the annual average surface temperature near southern Greenland spontaneously fell 6-10 standard deviations below its mean value for a period of 30-40 yr. The event was triggered by a persistent northwesterly wind that transported large amounts of buoyant cold and fresh water into the northern North Atlantic Ocean. Oceanic convection shut down in response to this flow, concentrating the entire cooling of the northern North Atlantic by the colder atmosphere in the uppermost ocean layer. Given the similarity between our simulation and observed records of rapid cooling events, our results indicate that internal atmospheric variability alone could have generated the extreme climate disruptions in this region.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N543ce6d354074470bf154bfa2c5b9cc9
35 Nd71075c8226c48ca917aebed4de53924
36 sg:journal.1018957
37 schema:name An abrupt climate event in a coupled ocean–atmosphere simulation without external forcing
38 schema:pagination 171
39 schema:productId N0d4c850b566740ee83fe6040bdac247d
40 N27f8559da689435eba3f3615315baee2
41 N2c53a67fcfd3413a9718727d192cc544
42 Ndc6d3a1fb8d4427b9dc0653461262828
43 Ndc74856a20b94332bb58c7ca6e251f44
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010025362
45 https://doi.org/10.1038/35051544
46 schema:sdDatePublished 2019-04-11T12:27
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nad9eccdad586467b8347faf0418719d6
49 schema:url https://www.nature.com/articles/35051544
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0d4c850b566740ee83fe6040bdac247d schema:name pubmed_id
54 schema:value 11196636
55 rdf:type schema:PropertyValue
56 N13d8bf536cc34fb0b23bd3d974aaaa3f rdf:first sg:person.015367614247.25
57 rdf:rest rdf:nil
58 N27f8559da689435eba3f3615315baee2 schema:name readcube_id
59 schema:value 2fc31a37197cfbb51b7eaf6a685e0beee41bea3acfbd3a93f6fe752628c8532d
60 rdf:type schema:PropertyValue
61 N2c53a67fcfd3413a9718727d192cc544 schema:name nlm_unique_id
62 schema:value 0410462
63 rdf:type schema:PropertyValue
64 N543ce6d354074470bf154bfa2c5b9cc9 schema:volumeNumber 409
65 rdf:type schema:PublicationVolume
66 N81f21965ec31460fa6ff2d6119f1f269 schema:affiliation https://www.grid.ac/institutes/grid.473157.3
67 schema:familyName Hall
68 schema:givenName Alex
69 rdf:type schema:Person
70 Nad9eccdad586467b8347faf0418719d6 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nd71075c8226c48ca917aebed4de53924 schema:issueNumber 6817
73 rdf:type schema:PublicationIssue
74 Ndc6d3a1fb8d4427b9dc0653461262828 schema:name doi
75 schema:value 10.1038/35051544
76 rdf:type schema:PropertyValue
77 Ndc74856a20b94332bb58c7ca6e251f44 schema:name dimensions_id
78 schema:value pub.1010025362
79 rdf:type schema:PropertyValue
80 Ndf02c0a3e86142fcb46bfd70440afe35 rdf:first N81f21965ec31460fa6ff2d6119f1f269
81 rdf:rest N13d8bf536cc34fb0b23bd3d974aaaa3f
82 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
83 schema:name Earth Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
86 schema:name Oceanography
87 rdf:type schema:DefinedTerm
88 sg:journal.1018957 schema:issn 0090-0028
89 1476-4687
90 schema:name Nature
91 rdf:type schema:Periodical
92 sg:person.015367614247.25 schema:affiliation https://www.grid.ac/institutes/grid.482795.5
93 schema:familyName Stouffer
94 schema:givenName Ronald J.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367614247.25
96 rdf:type schema:Person
97 sg:pub.10.1038/359311a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047351475
98 https://doi.org/10.1038/359311a0
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/378165a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019547367
101 https://doi.org/10.1038/378165a0
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0079-6611(88)90049-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012522835
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1029/1999jc900146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034584323
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1029/95gl02651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044293527
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1029/95gl02670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048617996
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1029/96gl03927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031519813
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1029/96pa03932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034677808
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1029/jc084ic05p02503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008986581
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1126/science.218.4579.1273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062525899
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1126/science.269.5224.676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062550625
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1126/science.278.5341.1257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037112010
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1126/science.288.5474.2198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569996
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1175/1520-0442(1988)001<0841:tseoac>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023990689
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004954487
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1175/1520-0442(1992)005<0105:troaco>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033366210
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1175/1520-0442(1993)006<1993:ivottc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050865955
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1175/1520-0442(1994)007<0005:mcroac>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032344432
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1175/1520-0442(1996)009<0376:lfvosa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024880632
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1175/1520-0442(1999)012<2224:roacoa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036661878
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1175/1520-0442(2000)013<1018:amitec>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029039497
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1175/1520-0485(1995)025<1350:atttca>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010872215
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063452141
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1175/1520-0493(1982)110<0625:adotgg>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043619254
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.473157.3 schema:alternateName Lamont-Doherty Earth Observatory
148 schema:name *Lamont-Doherty Earth Observatory , Palisades, New York 10964, USA
149 rdf:type schema:Organization
150 https://www.grid.ac/institutes/grid.482795.5 schema:alternateName Geophysical Fluid Dynamics Laboratory
151 schema:name †Geophysical Fluid Dynamics Laboratory , Princeton, New Jersey 08542, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...