Superconductivity at 52 K in hole-doped C60 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

J. H. Schön, Ch. Kloc, B. Batlogg

ABSTRACT

Superconductivity in electron-doped C60 was first observed almost ten years ago. The metallic state and superconductivity result from the transfer of electrons from alkaline or alkaline-earth ions to the C60 molecule, which is known to be a strong electron acceptor. For this reason, it is very difficult to remove electrons from C60--yet one might expect to see superconductivity at higher temperatures in hole-doped than in electron-doped C60, because of the higher density of electronic states in the valence band than in the conduction band. We have used the technique of gate-induced doping in a field-effect transistor configuration to introduce significant densities of holes into C60. We observe superconductivity over an extended range of hole density, with a smoothly varying transition temperature Tc that peaks at 52 K. By comparison with the well established dependence of Tc on the lattice parameter in electron-doped C60, we anticipate that Tc values significantly in excess of 100 K should be achievable in a suitably expanded, hole-doped C60 lattice. More... »

PAGES

549

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6812

VOLUME

408

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35046008

DOI

http://dx.doi.org/10.1038/35046008

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001915462

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11117735


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nokia (United States)", 
          "id": "https://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00f6n", 
        "givenName": "J. H.", 
        "id": "sg:person.01052566563.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052566563.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nokia (United States)", 
          "id": "https://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kloc", 
        "givenName": "Ch.", 
        "id": "sg:person.015123205307.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015123205307.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nokia (United States)", 
          "id": "https://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batlogg", 
        "givenName": "B.", 
        "id": "sg:person.0626642014.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626642014.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/350600a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017146843", 
          "https://doi.org/10.1038/350600a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020391816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020391816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511622946.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021230642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(93)90782-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035425109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(93)90782-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035425109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1993.0040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(89)90225-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040936613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.289.5476.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041328589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(97)00370-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043975499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045829153", 
          "https://doi.org/10.1038/35021018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2428829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045843660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.69.575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046867256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.69.575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046867256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050062519", 
          "https://doi.org/10.1038/35021011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/jm9950501719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050743809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm980226p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055419085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm980226p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055419085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.4544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.4544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.5114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.5114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.11247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.11247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.12064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.12064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.4121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.4121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.254.5034.989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062543002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.255.5041.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062543292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.268.5208.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062550010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5466.656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062569308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5475.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062570072"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "Superconductivity in electron-doped C60 was first observed almost ten years ago. The metallic state and superconductivity result from the transfer of electrons from alkaline or alkaline-earth ions to the C60 molecule, which is known to be a strong electron acceptor. For this reason, it is very difficult to remove electrons from C60--yet one might expect to see superconductivity at higher temperatures in hole-doped than in electron-doped C60, because of the higher density of electronic states in the valence band than in the conduction band. We have used the technique of gate-induced doping in a field-effect transistor configuration to introduce significant densities of holes into C60. We observe superconductivity over an extended range of hole density, with a smoothly varying transition temperature Tc that peaks at 52 K. By comparison with the well established dependence of Tc on the lattice parameter in electron-doped C60, we anticipate that Tc values significantly in excess of 100 K should be achievable in a suitably expanded, hole-doped C60 lattice.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35046008", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6812", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "408"
      }
    ], 
    "name": "Superconductivity at 52\u2009K in hole-doped C60", 
    "pagination": "549", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "091fb85b144daad9747b989595e17f38e85bed433ab2ce16383051b064de6672"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11117735"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35046008"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001915462"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35046008", 
      "https://app.dimensions.ai/details/publication/pub.1001915462"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000466.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35046008"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35046008'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35046008'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35046008'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35046008'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35046008 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Naf04f010a0494be8894584b0724328e5
4 schema:citation sg:pub.10.1038/35021011
5 sg:pub.10.1038/35021018
6 sg:pub.10.1038/350600a0
7 https://doi.org/10.1016/0038-1098(93)90782-i
8 https://doi.org/10.1016/0921-4534(89)90225-6
9 https://doi.org/10.1016/s0022-0248(97)00370-9
10 https://doi.org/10.1017/cbo9780511622946.006
11 https://doi.org/10.1021/cm980226p
12 https://doi.org/10.1039/jm9950501719
13 https://doi.org/10.1098/rsta.1993.0040
14 https://doi.org/10.1103/physrevb.45.4544
15 https://doi.org/10.1103/physrevb.45.5114
16 https://doi.org/10.1103/physrevb.46.11247
17 https://doi.org/10.1103/physrevb.46.12064
18 https://doi.org/10.1103/physrevlett.72.4121
19 https://doi.org/10.1103/physrevlett.77.167
20 https://doi.org/10.1103/physrevlett.84.1276
21 https://doi.org/10.1103/physrevlett.85.1970
22 https://doi.org/10.1103/revmodphys.69.575
23 https://doi.org/10.1126/science.254.5034.989
24 https://doi.org/10.1126/science.255.5041.184
25 https://doi.org/10.1126/science.268.5208.270
26 https://doi.org/10.1126/science.288.5466.656
27 https://doi.org/10.1126/science.288.5475.2338
28 https://doi.org/10.1126/science.289.5476.101
29 https://doi.org/10.1149/1.2428829
30 schema:datePublished 2000-11
31 schema:datePublishedReg 2000-11-01
32 schema:description Superconductivity in electron-doped C60 was first observed almost ten years ago. The metallic state and superconductivity result from the transfer of electrons from alkaline or alkaline-earth ions to the C60 molecule, which is known to be a strong electron acceptor. For this reason, it is very difficult to remove electrons from C60--yet one might expect to see superconductivity at higher temperatures in hole-doped than in electron-doped C60, because of the higher density of electronic states in the valence band than in the conduction band. We have used the technique of gate-induced doping in a field-effect transistor configuration to introduce significant densities of holes into C60. We observe superconductivity over an extended range of hole density, with a smoothly varying transition temperature Tc that peaks at 52 K. By comparison with the well established dependence of Tc on the lattice parameter in electron-doped C60, we anticipate that Tc values significantly in excess of 100 K should be achievable in a suitably expanded, hole-doped C60 lattice.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N2d737de8b0b547cab4668ecd74d5cd44
37 N903fc9322d1f4c7e9110d396a6ca9053
38 sg:journal.1018957
39 schema:name Superconductivity at 52 K in hole-doped C60
40 schema:pagination 549
41 schema:productId N01aa5a6476c64248a230e67ce79a022c
42 N45f18886fbc64efd9938d544acc2c819
43 Nb646e4fdadc04ad59ea632856b5c4fad
44 Nbaa2dcd1bd0b4e8c9c225c5f48517aac
45 Nd1c649e6c1c841399b494c4653db0a37
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001915462
47 https://doi.org/10.1038/35046008
48 schema:sdDatePublished 2019-04-10T19:00
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ncc9f9d9933f44c8ea6ecd26735e21486
51 schema:url https://www.nature.com/articles/35046008
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N01aa5a6476c64248a230e67ce79a022c schema:name nlm_unique_id
56 schema:value 0410462
57 rdf:type schema:PropertyValue
58 N2d737de8b0b547cab4668ecd74d5cd44 schema:issueNumber 6812
59 rdf:type schema:PublicationIssue
60 N45f18886fbc64efd9938d544acc2c819 schema:name doi
61 schema:value 10.1038/35046008
62 rdf:type schema:PropertyValue
63 N607389fdcccb41a8a68133879e344e32 rdf:first sg:person.015123205307.99
64 rdf:rest N8c6815c24d5e47d399ef6d37235b4275
65 N8c6815c24d5e47d399ef6d37235b4275 rdf:first sg:person.0626642014.16
66 rdf:rest rdf:nil
67 N903fc9322d1f4c7e9110d396a6ca9053 schema:volumeNumber 408
68 rdf:type schema:PublicationVolume
69 Naf04f010a0494be8894584b0724328e5 rdf:first sg:person.01052566563.80
70 rdf:rest N607389fdcccb41a8a68133879e344e32
71 Nb646e4fdadc04ad59ea632856b5c4fad schema:name pubmed_id
72 schema:value 11117735
73 rdf:type schema:PropertyValue
74 Nbaa2dcd1bd0b4e8c9c225c5f48517aac schema:name readcube_id
75 schema:value 091fb85b144daad9747b989595e17f38e85bed433ab2ce16383051b064de6672
76 rdf:type schema:PropertyValue
77 Ncc9f9d9933f44c8ea6ecd26735e21486 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nd1c649e6c1c841399b494c4653db0a37 schema:name dimensions_id
80 schema:value pub.1001915462
81 rdf:type schema:PropertyValue
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
86 schema:name Materials Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1018957 schema:issn 0090-0028
89 1476-4687
90 schema:name Nature
91 rdf:type schema:Periodical
92 sg:person.01052566563.80 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
93 schema:familyName Schön
94 schema:givenName J. H.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052566563.80
96 rdf:type schema:Person
97 sg:person.015123205307.99 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
98 schema:familyName Kloc
99 schema:givenName Ch.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015123205307.99
101 rdf:type schema:Person
102 sg:person.0626642014.16 schema:affiliation https://www.grid.ac/institutes/grid.469490.6
103 schema:familyName Batlogg
104 schema:givenName B.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626642014.16
106 rdf:type schema:Person
107 sg:pub.10.1038/35021011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050062519
108 https://doi.org/10.1038/35021011
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/35021018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045829153
111 https://doi.org/10.1038/35021018
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/350600a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017146843
114 https://doi.org/10.1038/350600a0
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0038-1098(93)90782-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1035425109
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0921-4534(89)90225-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040936613
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0022-0248(97)00370-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043975499
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1017/cbo9780511622946.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021230642
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/cm980226p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055419085
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1039/jm9950501719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050743809
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1098/rsta.1993.0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781522
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.45.4544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561574
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.45.5114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561682
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.46.11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060562612
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.46.12064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060562732
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.72.4121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809283
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.77.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813703
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.84.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020391816
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.85.1970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821772
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/revmodphys.69.575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046867256
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1126/science.254.5034.989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543002
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1126/science.255.5041.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543292
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.268.5208.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062550010
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.288.5466.656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569308
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.288.5475.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062570072
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.289.5476.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041328589
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1149/1.2428829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045843660
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.469490.6 schema:alternateName Nokia (United States)
163 schema:name Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...