Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

Eugenio Coronado, José R. Galán-Mascarós, Carlos J. Gómez-García, Vladimir Laukhin

ABSTRACT

Crystal engineering--the planning and construction of crystalline supramolecular architectures from modular building blocks--permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity, ferromagnetism and nonlinear optical properties. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of 'bi-functionality' targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic pi-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties, but also systems that are both superconducting and paramagnetic. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity. More... »

PAGES

447

Journal

TITLE

Nature

ISSUE

6811

VOLUME

408

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35044035

DOI

http://dx.doi.org/10.1038/35044035

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009592175

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11100721


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "*Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coronado", 
        "givenName": "Eugenio", 
        "id": "sg:person.01245166576.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245166576.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "*Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gal\u00e1n-Mascar\u00f3s", 
        "givenName": "Jos\u00e9 R.", 
        "id": "sg:person.01356314625.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356314625.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "*Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez-Garc\u00eda", 
        "givenName": "Carlos J.", 
        "id": "sg:person.01145671777.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145671777.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "*Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laukhin", 
        "givenName": "Vladimir", 
        "id": "sg:person.014074240772.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074240772.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jssc.1999.8078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000817913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9523350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001824602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9523350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001824602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.19970091213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004711613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.199403851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013355804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10587259908023361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014833696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3765(20000204)6:3<552::aid-chem552>3.0.co;2-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023631567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(98)00840-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046368894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8707-5_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046433660", 
          "https://doi.org/10.1007/978-94-015-8707-5_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic00334a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055552506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic950703v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055585691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic950703v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055585691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00044a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055701696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00053a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055702538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00154a022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055709816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.252.5012.1501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062542182"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "Crystal engineering--the planning and construction of crystalline supramolecular architectures from modular building blocks--permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity, ferromagnetism and nonlinear optical properties. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of 'bi-functionality' targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic pi-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties, but also systems that are both superconducting and paramagnetic. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35044035", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6811", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "408"
      }
    ], 
    "name": "Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound", 
    "pagination": "447", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2db1e63f628f98631c6ccda3e873f6f52c58753a3da241e33e7091195711b018"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11100721"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35044035"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009592175"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35044035", 
      "https://app.dimensions.ai/details/publication/pub.1009592175"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35044035"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35044035'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35044035'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35044035'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35044035'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      43 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35044035 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author N9577c2773be941cb81cba8c5b6849414
4 schema:citation sg:pub.10.1007/978-94-015-8707-5_25
5 https://doi.org/10.1002/(sici)1521-3765(20000204)6:3<552::aid-chem552>3.0.co;2-u
6 https://doi.org/10.1002/adma.19970091213
7 https://doi.org/10.1002/anie.199403851
8 https://doi.org/10.1006/jssc.1999.8078
9 https://doi.org/10.1016/s0304-8853(98)00840-3
10 https://doi.org/10.1021/ic00334a003
11 https://doi.org/10.1021/ic950703v
12 https://doi.org/10.1021/ja00044a004
13 https://doi.org/10.1021/ja00053a007
14 https://doi.org/10.1021/ja00154a022
15 https://doi.org/10.1021/ja9523350
16 https://doi.org/10.1080/10587259908023361
17 https://doi.org/10.1126/science.252.5012.1501
18 schema:datePublished 2000-11
19 schema:datePublishedReg 2000-11-01
20 schema:description Crystal engineering--the planning and construction of crystalline supramolecular architectures from modular building blocks--permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity, ferromagnetism and nonlinear optical properties. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of 'bi-functionality' targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic pi-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties, but also systems that are both superconducting and paramagnetic. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N0558535866a44e5496993509bb3fccab
25 N6d1cd039042046ec9a5535ba77064c4b
26 sg:journal.1018957
27 schema:name Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound
28 schema:pagination 447
29 schema:productId N0f89e8e5dd7544dcb184d070ff322a25
30 N3e4d59b87f5e46ee94565efbbe034200
31 N5500408bfa5b4f08b2a7ed7d11fdd7d1
32 N948d47b062a84a338680caa2e4f9d3c7
33 Nd0ef6c2069f44850b88890bcb77f53c6
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009592175
35 https://doi.org/10.1038/35044035
36 schema:sdDatePublished 2019-04-11T12:23
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N7679fc5b898d49b78e66d64a7ba3130a
39 schema:url https://www.nature.com/articles/35044035
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0558535866a44e5496993509bb3fccab schema:volumeNumber 408
44 rdf:type schema:PublicationVolume
45 N0f89e8e5dd7544dcb184d070ff322a25 schema:name nlm_unique_id
46 schema:value 0410462
47 rdf:type schema:PropertyValue
48 N3e4d59b87f5e46ee94565efbbe034200 schema:name pubmed_id
49 schema:value 11100721
50 rdf:type schema:PropertyValue
51 N5500408bfa5b4f08b2a7ed7d11fdd7d1 schema:name doi
52 schema:value 10.1038/35044035
53 rdf:type schema:PropertyValue
54 N591438c15b7c4eda88ebe8772129c565 rdf:first sg:person.014074240772.56
55 rdf:rest rdf:nil
56 N5c48ea148d3243afa3e75c7b20ec5bde rdf:first sg:person.01356314625.35
57 rdf:rest Nb0d581c56cc14a44959d176a1106ef67
58 N6d1cd039042046ec9a5535ba77064c4b schema:issueNumber 6811
59 rdf:type schema:PublicationIssue
60 N7679fc5b898d49b78e66d64a7ba3130a schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N948d47b062a84a338680caa2e4f9d3c7 schema:name readcube_id
63 schema:value 2db1e63f628f98631c6ccda3e873f6f52c58753a3da241e33e7091195711b018
64 rdf:type schema:PropertyValue
65 N9577c2773be941cb81cba8c5b6849414 rdf:first sg:person.01245166576.37
66 rdf:rest N5c48ea148d3243afa3e75c7b20ec5bde
67 Nb0d581c56cc14a44959d176a1106ef67 rdf:first sg:person.01145671777.14
68 rdf:rest N591438c15b7c4eda88ebe8772129c565
69 Nd0ef6c2069f44850b88890bcb77f53c6 schema:name dimensions_id
70 schema:value pub.1009592175
71 rdf:type schema:PropertyValue
72 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
73 schema:name Chemical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
76 schema:name Macromolecular and Materials Chemistry
77 rdf:type schema:DefinedTerm
78 sg:journal.1018957 schema:issn 0090-0028
79 1476-4687
80 schema:name Nature
81 rdf:type schema:Periodical
82 sg:person.01145671777.14 schema:affiliation https://www.grid.ac/institutes/grid.5338.d
83 schema:familyName Gómez-García
84 schema:givenName Carlos J.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145671777.14
86 rdf:type schema:Person
87 sg:person.01245166576.37 schema:affiliation https://www.grid.ac/institutes/grid.5338.d
88 schema:familyName Coronado
89 schema:givenName Eugenio
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245166576.37
91 rdf:type schema:Person
92 sg:person.01356314625.35 schema:affiliation https://www.grid.ac/institutes/grid.5338.d
93 schema:familyName Galán-Mascarós
94 schema:givenName José R.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356314625.35
96 rdf:type schema:Person
97 sg:person.014074240772.56 schema:affiliation https://www.grid.ac/institutes/grid.5338.d
98 schema:familyName Laukhin
99 schema:givenName Vladimir
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074240772.56
101 rdf:type schema:Person
102 sg:pub.10.1007/978-94-015-8707-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046433660
103 https://doi.org/10.1007/978-94-015-8707-5_25
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/(sici)1521-3765(20000204)6:3<552::aid-chem552>3.0.co;2-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1023631567
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/adma.19970091213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004711613
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/anie.199403851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013355804
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1006/jssc.1999.8078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000817913
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0304-8853(98)00840-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046368894
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ic00334a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055552506
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/ic950703v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055585691
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/ja00044a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055701696
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/ja00053a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055702538
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/ja00154a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055709816
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/ja9523350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001824602
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/10587259908023361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014833696
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1126/science.252.5012.1501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062542182
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.5338.d schema:alternateName University of Valencia
132 schema:name *Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Spain
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...