Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

Eugenio Coronado, José R. Galán-Mascarós, Carlos J. Gómez-García, Vladimir Laukhin

ABSTRACT

Crystal engineering—the planning and construction of crystalline supramolecular architectures from modular building blocks—permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity1, ferromagnetism2 and nonlinear optical properties3. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of ‘bi-functionality’ targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic π-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors1, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties4,5, but also systems that are both superconducting and paramagnetic6,7. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases8,9,10,11,12. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity. More... »

PAGES

447-449

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35044035

DOI

http://dx.doi.org/10.1038/35044035

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009592175

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11100721


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coronado", 
        "givenName": "Eugenio", 
        "id": "sg:person.01245166576.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245166576.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Texas A&M University, College Station, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain", 
            "Department of Chemistry, Texas A&M University, College Station, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gal\u00e1n-Mascar\u00f3s", 
        "givenName": "Jos\u00e9 R.", 
        "id": "sg:person.01356314625.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356314625.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez-Garc\u00eda", 
        "givenName": "Carlos J.", 
        "id": "sg:person.01145671777.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145671777.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ICMB-CSIC, Campus de la UAB, 08193, Bellaterra, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain", 
            "ICMB-CSIC, Campus de la UAB, 08193, Bellaterra, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laukhin", 
        "givenName": "Vladimir", 
        "id": "sg:person.014074240772.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074240772.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-015-8707-5_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046433660", 
          "https://doi.org/10.1007/978-94-015-8707-5_25"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "Crystal engineering\u2014the planning and construction of crystalline supramolecular architectures from modular building blocks\u2014permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity1, ferromagnetism2 and nonlinear optical properties3. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of \u2018bi-functionality\u2019 targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic \u03c0-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors1, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties4,5, but also systems that are both superconducting and paramagnetic6,7. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases8,9,10,11,12. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/35044035", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6811", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "408"
      }
    ], 
    "keywords": [
      "molecular materials", 
      "magnetic anions", 
      "Organic \u03c0-Electron Donors", 
      "magnetic coordination polymers", 
      "functional molecular materials", 
      "\u03c0-electron donors", 
      "BEDT-TTF cations", 
      "metallic conductivity", 
      "same crystal lattice", 
      "coordination polymers", 
      "supramolecular architectures", 
      "crystal engineering", 
      "bulky cations", 
      "oxalato complexes", 
      "inorganic anions", 
      "molecular conductors", 
      "insoluble powders", 
      "conventional inorganic", 
      "inorganic crystals", 
      "rational design", 
      "layered compound", 
      "cooperative magnetism", 
      "anions", 
      "crystal lattice", 
      "magnetic properties", 
      "cooperative properties", 
      "cations", 
      "infinite sheet", 
      "attractive goal", 
      "bulk magnetic properties", 
      "single crystals", 
      "conductivity", 
      "promising strategy", 
      "properties", 
      "crystals", 
      "distinct properties", 
      "polymers", 
      "materials", 
      "new physical phenomena", 
      "novel application", 
      "inorganics", 
      "coexistence of ferromagnetism", 
      "synthesis", 
      "compounds", 
      "derivatives", 
      "complexes", 
      "semiconducting", 
      "ferromagnetism", 
      "lattice", 
      "powder", 
      "magnetism", 
      "exhibit", 
      "donors", 
      "conductors", 
      "hybrids", 
      "layer", 
      "continuous lattices", 
      "presence", 
      "applications", 
      "nature", 
      "sheets", 
      "engineering", 
      "behavior", 
      "insertion", 
      "strategies", 
      "physical phenomena", 
      "design", 
      "useful behavior", 
      "coexistence", 
      "basis", 
      "system", 
      "phenomenon", 
      "types", 
      "architecture", 
      "discrete nature", 
      "construction", 
      "way", 
      "goal", 
      "buildings", 
      "modular buildings", 
      "planning"
    ], 
    "name": "Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound", 
    "pagination": "447-449", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009592175"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35044035"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11100721"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35044035", 
      "https://app.dimensions.ai/details/publication/pub.1009592175"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_304.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/35044035"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35044035'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35044035'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35044035'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35044035'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      112 URIs      99 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35044035 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0303
4 anzsrc-for:0306
5 anzsrc-for:09
6 anzsrc-for:0912
7 schema:author Nc7bf21cfd3554cd6ac1af53d497c0c84
8 schema:citation sg:pub.10.1007/978-94-015-8707-5_25
9 schema:datePublished 2000-11
10 schema:datePublishedReg 2000-11-01
11 schema:description Crystal engineering—the planning and construction of crystalline supramolecular architectures from modular building blocks—permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity1, ferromagnetism2 and nonlinear optical properties3. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of ‘bi-functionality’ targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic π-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors1, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties4,5, but also systems that are both superconducting and paramagnetic6,7. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases8,9,10,11,12. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N6fcbb11891aa418ea90cccde7d5b9653
15 Ncc8d19073e674110a4dcebcda2c5facf
16 sg:journal.1018957
17 schema:keywords BEDT-TTF cations
18 Organic π-Electron Donors
19 anions
20 applications
21 architecture
22 attractive goal
23 basis
24 behavior
25 buildings
26 bulk magnetic properties
27 bulky cations
28 cations
29 coexistence
30 coexistence of ferromagnetism
31 complexes
32 compounds
33 conductivity
34 conductors
35 construction
36 continuous lattices
37 conventional inorganic
38 cooperative magnetism
39 cooperative properties
40 coordination polymers
41 crystal engineering
42 crystal lattice
43 crystals
44 derivatives
45 design
46 discrete nature
47 distinct properties
48 donors
49 engineering
50 exhibit
51 ferromagnetism
52 functional molecular materials
53 goal
54 hybrids
55 infinite sheet
56 inorganic anions
57 inorganic crystals
58 inorganics
59 insertion
60 insoluble powders
61 lattice
62 layer
63 layered compound
64 magnetic anions
65 magnetic coordination polymers
66 magnetic properties
67 magnetism
68 materials
69 metallic conductivity
70 modular buildings
71 molecular conductors
72 molecular materials
73 nature
74 new physical phenomena
75 novel application
76 oxalato complexes
77 phenomenon
78 physical phenomena
79 planning
80 polymers
81 powder
82 presence
83 promising strategy
84 properties
85 rational design
86 same crystal lattice
87 semiconducting
88 sheets
89 single crystals
90 strategies
91 supramolecular architectures
92 synthesis
93 system
94 types
95 useful behavior
96 way
97 π-electron donors
98 schema:name Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound
99 schema:pagination 447-449
100 schema:productId N4f5c39c33cca4437bb14ecf08f1ab0af
101 N6ca69e71d432407996dc16bb50ab1e4f
102 Nb5de8702544541579dd1b78f2db82037
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009592175
104 https://doi.org/10.1038/35044035
105 schema:sdDatePublished 2022-12-01T06:22
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N72753bb51e68482a9dd1797ecbf6649d
108 schema:url https://doi.org/10.1038/35044035
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N0132d64fb79f438f8ccd3daadfbb3625 rdf:first sg:person.01356314625.35
113 rdf:rest Nfa98bdd0113f4c66baa369a238c21b29
114 N4f5c39c33cca4437bb14ecf08f1ab0af schema:name pubmed_id
115 schema:value 11100721
116 rdf:type schema:PropertyValue
117 N6ca69e71d432407996dc16bb50ab1e4f schema:name dimensions_id
118 schema:value pub.1009592175
119 rdf:type schema:PropertyValue
120 N6fcbb11891aa418ea90cccde7d5b9653 schema:volumeNumber 408
121 rdf:type schema:PublicationVolume
122 N72753bb51e68482a9dd1797ecbf6649d schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N8fc64224ff6246f7b236737ffdf3070f rdf:first sg:person.014074240772.56
125 rdf:rest rdf:nil
126 Nb5de8702544541579dd1b78f2db82037 schema:name doi
127 schema:value 10.1038/35044035
128 rdf:type schema:PropertyValue
129 Nc7bf21cfd3554cd6ac1af53d497c0c84 rdf:first sg:person.01245166576.37
130 rdf:rest N0132d64fb79f438f8ccd3daadfbb3625
131 Ncc8d19073e674110a4dcebcda2c5facf schema:issueNumber 6811
132 rdf:type schema:PublicationIssue
133 Nfa98bdd0113f4c66baa369a238c21b29 rdf:first sg:person.01145671777.14
134 rdf:rest N8fc64224ff6246f7b236737ffdf3070f
135 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
136 schema:name Chemical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
139 schema:name Inorganic Chemistry
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
142 schema:name Macromolecular and Materials Chemistry
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
145 schema:name Physical Chemistry (incl. Structural)
146 rdf:type schema:DefinedTerm
147 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
148 schema:name Engineering
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
151 schema:name Materials Engineering
152 rdf:type schema:DefinedTerm
153 sg:journal.1018957 schema:issn 0028-0836
154 1476-4687
155 schema:name Nature
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01145671777.14 schema:affiliation grid-institutes:grid.5338.d
159 schema:familyName Gómez-García
160 schema:givenName Carlos J.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145671777.14
162 rdf:type schema:Person
163 sg:person.01245166576.37 schema:affiliation grid-institutes:grid.5338.d
164 schema:familyName Coronado
165 schema:givenName Eugenio
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245166576.37
167 rdf:type schema:Person
168 sg:person.01356314625.35 schema:affiliation grid-institutes:grid.264756.4
169 schema:familyName Galán-Mascarós
170 schema:givenName José R.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356314625.35
172 rdf:type schema:Person
173 sg:person.014074240772.56 schema:affiliation grid-institutes:None
174 schema:familyName Laukhin
175 schema:givenName Vladimir
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074240772.56
177 rdf:type schema:Person
178 sg:pub.10.1007/978-94-015-8707-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046433660
179 https://doi.org/10.1007/978-94-015-8707-5_25
180 rdf:type schema:CreativeWork
181 grid-institutes:None schema:alternateName ICMB-CSIC, Campus de la UAB, 08193, Bellaterra, Spain
182 schema:name ICMB-CSIC, Campus de la UAB, 08193, Bellaterra, Spain
183 Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain
184 rdf:type schema:Organization
185 grid-institutes:grid.264756.4 schema:alternateName Department of Chemistry, Texas A&M University, College Station, Texas, USA
186 schema:name Department of Chemistry, Texas A&M University, College Station, Texas, USA
187 Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain
188 rdf:type schema:Organization
189 grid-institutes:grid.5338.d schema:alternateName Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain
190 schema:name Instituto de Ciencia Molecular, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Spain
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...