Kondo physics in carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-11

AUTHORS

Jesper Nygård, David Henry Cobden, Poul Erik Lindelof

ABSTRACT

The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes1 are quantum wires that have been found to act as one-dimensional quantum dots2,3, Luttinger liquids4,5, proximity-induced superconductors6,7 and ballistic8 and diffusive9 one-dimensional metals. Here we report that electrically contacted single-walled carbon nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain10 enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots11,12,13,14,15,16,17,18. The far greater tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects19,20 accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron numbers (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field. More... »

PAGES

342-346

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35042545

DOI

http://dx.doi.org/10.1038/35042545

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037426978

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11099037


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00d8rsted Laboratory, Niels Bohr Institute, Universitetsparken 5, DK-2100, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "\u00d8rsted Laboratory, Niels Bohr Institute, Universitetsparken 5, DK-2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nyg\u00e5rd", 
        "givenName": "Jesper", 
        "id": "sg:person.0711555056.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711555056.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Department of Physics, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cobden", 
        "givenName": "David Henry", 
        "id": "sg:person.0640205720.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640205720.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00d8rsted Laboratory, Niels Bohr Institute, Universitetsparken 5, DK-2100, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "\u00d8rsted Laboratory, Niels Bohr Institute, Universitetsparken 5, DK-2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindelof", 
        "givenName": "Poul Erik", 
        "id": "sg:person.0760402255.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760402255.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003390051004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012520960", 
          "https://doi.org/10.1007/s003390051004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386474a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007355361", 
          "https://doi.org/10.1038/386474a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009517723", 
          "https://doi.org/10.1038/46241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004654129125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019926752", 
          "https://doi.org/10.1023/a:1004654129125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037537429", 
          "https://doi.org/10.1038/17569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038241191", 
          "https://doi.org/10.1038/17755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048906273", 
          "https://doi.org/10.1038/29494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028562493", 
          "https://doi.org/10.1038/35015509"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes1 are quantum wires that have been found to act as one-dimensional quantum dots2,3, Luttinger liquids4,5, proximity-induced superconductors6,7 and ballistic8 and diffusive9 one-dimensional metals. Here we report that electrically contacted single-walled carbon nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain10 enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots11,12,13,14,15,16,17,18. The far greater tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects19,20 accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron numbers (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/35042545", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6810", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "408"
      }
    ], 
    "keywords": [
      "Kondo effect", 
      "Kondo physics", 
      "impurity magnetic moment", 
      "one-dimensional quantum", 
      "carbon nanotubes", 
      "one-dimensional quantum dot", 
      "large electron numbers", 
      "wire-like molecules", 
      "one-dimensional metals", 
      "single-walled carbon nanotubes", 
      "magnetic impurities", 
      "magnetic moment", 
      "fundamental physics", 
      "magnetic field", 
      "metallic host", 
      "semiconductor quantum", 
      "molecular electronics", 
      "quantum wires", 
      "atomic impurities", 
      "Kondo resonance", 
      "unitary limit", 
      "powerful probe", 
      "physics", 
      "electron number", 
      "quantum dots", 
      "delocalized electrons", 
      "great tunability", 
      "nanotube devices", 
      "carbon nanotubes1", 
      "quantum", 
      "dots", 
      "prototypical case", 
      "even values", 
      "nanotubes", 
      "new class", 
      "metals", 
      "metal reservoir", 
      "Kondo", 
      "electrical leads", 
      "impurities", 
      "Luttinger", 
      "electrons", 
      "tunability", 
      "molecules", 
      "resonance", 
      "moment", 
      "universality", 
      "class", 
      "electronics", 
      "field", 
      "probe", 
      "devices", 
      "wire", 
      "limit", 
      "interaction", 
      "system", 
      "logical step", 
      "connection", 
      "transport", 
      "lead", 
      "step", 
      "number", 
      "previous system", 
      "effect", 
      "cases", 
      "reservoir", 
      "values", 
      "example", 
      "host", 
      "study", 
      "development"
    ], 
    "name": "Kondo physics in carbon nanotubes", 
    "pagination": "342-346", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037426978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35042545"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11099037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35042545", 
      "https://app.dimensions.ai/details/publication/pub.1037426978"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_345.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/35042545"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35042545'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35042545'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35042545'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35042545'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      108 URIs      89 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35042545 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:10
4 anzsrc-for:1007
5 schema:author N7fdfd6c26bbe4f999f6148daf64c367f
6 schema:citation sg:pub.10.1007/s003390051004
7 sg:pub.10.1023/a:1004654129125
8 sg:pub.10.1038/17569
9 sg:pub.10.1038/17755
10 sg:pub.10.1038/29494
11 sg:pub.10.1038/34373
12 sg:pub.10.1038/35015509
13 sg:pub.10.1038/386474a0
14 sg:pub.10.1038/46241
15 schema:datePublished 2000-11
16 schema:datePublishedReg 2000-11-01
17 schema:description The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes1 are quantum wires that have been found to act as one-dimensional quantum dots2,3, Luttinger liquids4,5, proximity-induced superconductors6,7 and ballistic8 and diffusive9 one-dimensional metals. Here we report that electrically contacted single-walled carbon nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain10 enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots11,12,13,14,15,16,17,18. The far greater tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects19,20 accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron numbers (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N3b94d6350d904ce6b229cbcb830a6535
21 Nce871948744f49b6afc0d81176cf40ef
22 sg:journal.1018957
23 schema:keywords Kondo
24 Kondo effect
25 Kondo physics
26 Kondo resonance
27 Luttinger
28 atomic impurities
29 carbon nanotubes
30 carbon nanotubes1
31 cases
32 class
33 connection
34 delocalized electrons
35 development
36 devices
37 dots
38 effect
39 electrical leads
40 electron number
41 electronics
42 electrons
43 even values
44 example
45 field
46 fundamental physics
47 great tunability
48 host
49 impurities
50 impurity magnetic moment
51 interaction
52 large electron numbers
53 lead
54 limit
55 logical step
56 magnetic field
57 magnetic impurities
58 magnetic moment
59 metal reservoir
60 metallic host
61 metals
62 molecular electronics
63 molecules
64 moment
65 nanotube devices
66 nanotubes
67 new class
68 number
69 one-dimensional metals
70 one-dimensional quantum
71 one-dimensional quantum dot
72 physics
73 powerful probe
74 previous system
75 probe
76 prototypical case
77 quantum
78 quantum dots
79 quantum wires
80 reservoir
81 resonance
82 semiconductor quantum
83 single-walled carbon nanotubes
84 step
85 study
86 system
87 transport
88 tunability
89 unitary limit
90 universality
91 values
92 wire
93 wire-like molecules
94 schema:name Kondo physics in carbon nanotubes
95 schema:pagination 342-346
96 schema:productId N5cf71387205d4ad89405a97f79e73807
97 N7d5106dad1a0424b8cfb902174087ef1
98 N8b49658f0bd1483281dde22f40b1b4a0
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037426978
100 https://doi.org/10.1038/35042545
101 schema:sdDatePublished 2022-09-02T15:50
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nb23e9deddd914938afa8c852048978d6
104 schema:url https://doi.org/10.1038/35042545
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N3b94d6350d904ce6b229cbcb830a6535 schema:volumeNumber 408
109 rdf:type schema:PublicationVolume
110 N45f7dfd166054f90b2422da9fb21172b rdf:first sg:person.0760402255.50
111 rdf:rest rdf:nil
112 N5cf71387205d4ad89405a97f79e73807 schema:name doi
113 schema:value 10.1038/35042545
114 rdf:type schema:PropertyValue
115 N7355c8510cdc49ffba4dbfe3d5d3cc89 rdf:first sg:person.0640205720.34
116 rdf:rest N45f7dfd166054f90b2422da9fb21172b
117 N7d5106dad1a0424b8cfb902174087ef1 schema:name pubmed_id
118 schema:value 11099037
119 rdf:type schema:PropertyValue
120 N7fdfd6c26bbe4f999f6148daf64c367f rdf:first sg:person.0711555056.49
121 rdf:rest N7355c8510cdc49ffba4dbfe3d5d3cc89
122 N8b49658f0bd1483281dde22f40b1b4a0 schema:name dimensions_id
123 schema:value pub.1037426978
124 rdf:type schema:PropertyValue
125 Nb23e9deddd914938afa8c852048978d6 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Nce871948744f49b6afc0d81176cf40ef schema:issueNumber 6810
128 rdf:type schema:PublicationIssue
129 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
130 schema:name Physical Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
133 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
134 rdf:type schema:DefinedTerm
135 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
136 schema:name Technology
137 rdf:type schema:DefinedTerm
138 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
139 schema:name Nanotechnology
140 rdf:type schema:DefinedTerm
141 sg:journal.1018957 schema:issn 0028-0836
142 1476-4687
143 schema:name Nature
144 schema:publisher Springer Nature
145 rdf:type schema:Periodical
146 sg:person.0640205720.34 schema:affiliation grid-institutes:grid.7372.1
147 schema:familyName Cobden
148 schema:givenName David Henry
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640205720.34
150 rdf:type schema:Person
151 sg:person.0711555056.49 schema:affiliation grid-institutes:grid.5254.6
152 schema:familyName Nygård
153 schema:givenName Jesper
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711555056.49
155 rdf:type schema:Person
156 sg:person.0760402255.50 schema:affiliation grid-institutes:grid.5254.6
157 schema:familyName Lindelof
158 schema:givenName Poul Erik
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760402255.50
160 rdf:type schema:Person
161 sg:pub.10.1007/s003390051004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012520960
162 https://doi.org/10.1007/s003390051004
163 rdf:type schema:CreativeWork
164 sg:pub.10.1023/a:1004654129125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019926752
165 https://doi.org/10.1023/a:1004654129125
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/17569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037537429
168 https://doi.org/10.1038/17569
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/17755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038241191
171 https://doi.org/10.1038/17755
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/29494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048906273
174 https://doi.org/10.1038/29494
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/34373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698314
177 https://doi.org/10.1038/34373
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/35015509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028562493
180 https://doi.org/10.1038/35015509
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/386474a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007355361
183 https://doi.org/10.1038/386474a0
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/46241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009517723
186 https://doi.org/10.1038/46241
187 rdf:type schema:CreativeWork
188 grid-institutes:grid.5254.6 schema:alternateName Ørsted Laboratory, Niels Bohr Institute, Universitetsparken 5, DK-2100, Copenhagen, Denmark
189 schema:name Ørsted Laboratory, Niels Bohr Institute, Universitetsparken 5, DK-2100, Copenhagen, Denmark
190 rdf:type schema:Organization
191 grid-institutes:grid.7372.1 schema:alternateName Department of Physics, University of Warwick, CV4 7AL, Coventry, UK
192 schema:name Department of Physics, University of Warwick, CV4 7AL, Coventry, UK
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...