Quantifying the uncertainty in forecasts of anthropogenic climate change View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

Myles R. Allen, Peter A. Stott, John F. B. Mitchell, Reiner Schnur, Thomas L. Delworth

ABSTRACT

Forecasts of climate change are inevitably uncertain. It is therefore essential to quantify the risk of significant departures from the predicted response to a given emission scenario. Previous analyses of this risk have been based either on expert opinion, perturbation analysis of simplified climate models or the comparison of predictions from general circulation models. Recent observed changes that appear to be attributable to human influence provide a powerful constraint on the uncertainties in multi-decadal forecasts. Here we assess the range of warming rates over the coming 50 years that are consistent with the observed near-surface temperature record as well as with the overall patterns of response predicted by several general circulation models. We expect global mean temperatures in the decade 2036-46 to be 1-2.5 K warmer than in pre-industrial times under a 'business as usual' emission scenario. This range is relatively robust to errors in the models' climate sensitivity, rate of oceanic heat uptake or global response to sulphate aerosols as long as these errors are persistent over time. Substantial changes in the current balance of greenhouse warming and sulphate aerosol cooling would, however, increase the uncertainty. Unlike 50-year warming rates, the final equilibrium warming after the atmospheric composition stabilizes remains very uncertain, despite the evidence provided by the emerging signal. More... »

PAGES

617

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35036559

DOI

http://dx.doi.org/10.1038/35036559

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016303772

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11034207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rutherford Appleton Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.76978.37", 
          "name": [
            "*Space Science and Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "Myles R.", 
        "id": "sg:person.0600474550.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "\u2020Hadley Centre for Climate Prediction and Research, The Meteorological Office, London Road, Bracknell RG12 2SZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stott", 
        "givenName": "Peter A.", 
        "id": "sg:person.015667030077.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "\u2020Hadley Centre for Climate Prediction and Research, The Meteorological Office, London Road, Bracknell RG12 2SZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitchell", 
        "givenName": "John F. B.", 
        "id": "sg:person.0616304361.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616304361.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology", 
          "id": "https://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "\u2021Max-Planck-Institut f\u00fcr Meteorologie , Bundesstrasse 55, 20146, Hamburg , Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schnur", 
        "givenName": "Reiner", 
        "id": "sg:person.013604667231.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013604667231.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "\u00a7Geophysical Fluid Dynamics Laboratory/NOAA , PO Box 308, Princeton, New Jersey 08542-0308, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delworth", 
        "givenName": "Thomas L.", 
        "id": "sg:person.014151466245.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151466245.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/376501a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002349860", 
          "https://doi.org/10.1038/376501a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1997)010<0245:omogwb>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005274886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(2000)081<0313:tcmipc>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006286268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007895196", 
          "https://doi.org/10.1007/s003820050291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008218600", 
          "https://doi.org/10.1007/s003820050186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008860100", 
          "https://doi.org/10.1007/s003820050185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35041539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011328414", 
          "https://doi.org/10.1038/35041539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35041539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011328414", 
          "https://doi.org/10.1038/35041539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011881242", 
          "https://doi.org/10.1038/21170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011881242", 
          "https://doi.org/10.1038/21170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.16.8314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012733304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1999)012<3004:tccswa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015487960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1998)011<3282:sddocc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017095751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999gl010859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020288244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8719-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025269698", 
          "https://doi.org/10.1007/978-94-015-8719-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1996)009<2281:dggicc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029114992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382039a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029787674", 
          "https://doi.org/10.1038/382039a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030324527", 
          "https://doi.org/10.1007/s003820050221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034790274", 
          "https://doi.org/10.1038/44266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034790274", 
          "https://doi.org/10.1038/44266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039310835", 
          "https://doi.org/10.1038/21164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039310835", 
          "https://doi.org/10.1038/21164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999jd900965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040651749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042912048", 
          "https://doi.org/10.1007/s003820050224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043746611", 
          "https://doi.org/10.1007/s003820050155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047759135", 
          "https://doi.org/10.1007/s003820050196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/an9871200377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048956244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1998)011<0563:dcsits>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051865516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052898494", 
          "https://doi.org/10.1038/19745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052898494", 
          "https://doi.org/10.1038/19745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-1625(99)00099-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052930785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es00010a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055484536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.229.4716.857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062530669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5461.2246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611971002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098553836"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "Forecasts of climate change are inevitably uncertain. It is therefore essential to quantify the risk of significant departures from the predicted response to a given emission scenario. Previous analyses of this risk have been based either on expert opinion, perturbation analysis of simplified climate models or the comparison of predictions from general circulation models. Recent observed changes that appear to be attributable to human influence provide a powerful constraint on the uncertainties in multi-decadal forecasts. Here we assess the range of warming rates over the coming 50 years that are consistent with the observed near-surface temperature record as well as with the overall patterns of response predicted by several general circulation models. We expect global mean temperatures in the decade 2036-46 to be 1-2.5 K warmer than in pre-industrial times under a 'business as usual' emission scenario. This range is relatively robust to errors in the models' climate sensitivity, rate of oceanic heat uptake or global response to sulphate aerosols as long as these errors are persistent over time. Substantial changes in the current balance of greenhouse warming and sulphate aerosol cooling would, however, increase the uncertainty. Unlike 50-year warming rates, the final equilibrium warming after the atmospheric composition stabilizes remains very uncertain, despite the evidence provided by the emerging signal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35036559", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6804", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "name": "Quantifying the uncertainty in forecasts of anthropogenic climate change", 
    "pagination": "617", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4daf043fcd06f1bf5ec24939f951936aa4ed632e1d488588539ef888b82466fd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11034207"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35036559"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016303772"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35036559", 
      "https://app.dimensions.ai/details/publication/pub.1016303772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87083_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35036559"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35036559'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35036559'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35036559'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35036559'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35036559 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N874838cfd43946e7b5765da92e839a3b
4 schema:citation sg:pub.10.1007/978-94-015-8719-8_2
5 sg:pub.10.1007/s003820050155
6 sg:pub.10.1007/s003820050185
7 sg:pub.10.1007/s003820050186
8 sg:pub.10.1007/s003820050196
9 sg:pub.10.1007/s003820050221
10 sg:pub.10.1007/s003820050224
11 sg:pub.10.1007/s003820050291
12 sg:pub.10.1038/19745
13 sg:pub.10.1038/21164
14 sg:pub.10.1038/21170
15 sg:pub.10.1038/35041539
16 sg:pub.10.1038/376501a0
17 sg:pub.10.1038/382039a0
18 sg:pub.10.1038/44266
19 https://doi.org/10.1016/s0040-1625(99)00099-2
20 https://doi.org/10.1021/es00010a003
21 https://doi.org/10.1029/1999gl010859
22 https://doi.org/10.1029/1999jd900965
23 https://doi.org/10.1039/an9871200377
24 https://doi.org/10.1073/pnas.94.16.8314
25 https://doi.org/10.1126/science.229.4716.857
26 https://doi.org/10.1126/science.287.5461.2246
27 https://doi.org/10.1137/1.9781611971002
28 https://doi.org/10.1175/1520-0442(1996)009<2281:dggicc>2.0.co;2
29 https://doi.org/10.1175/1520-0442(1997)010<0245:omogwb>2.0.co;2
30 https://doi.org/10.1175/1520-0442(1998)011<0563:dcsits>2.0.co;2
31 https://doi.org/10.1175/1520-0442(1998)011<3282:sddocc>2.0.co;2
32 https://doi.org/10.1175/1520-0442(1999)012<3004:tccswa>2.0.co;2
33 https://doi.org/10.1175/1520-0477(2000)081<0313:tcmipc>2.3.co;2
34 schema:datePublished 2000-10
35 schema:datePublishedReg 2000-10-01
36 schema:description Forecasts of climate change are inevitably uncertain. It is therefore essential to quantify the risk of significant departures from the predicted response to a given emission scenario. Previous analyses of this risk have been based either on expert opinion, perturbation analysis of simplified climate models or the comparison of predictions from general circulation models. Recent observed changes that appear to be attributable to human influence provide a powerful constraint on the uncertainties in multi-decadal forecasts. Here we assess the range of warming rates over the coming 50 years that are consistent with the observed near-surface temperature record as well as with the overall patterns of response predicted by several general circulation models. We expect global mean temperatures in the decade 2036-46 to be 1-2.5 K warmer than in pre-industrial times under a 'business as usual' emission scenario. This range is relatively robust to errors in the models' climate sensitivity, rate of oceanic heat uptake or global response to sulphate aerosols as long as these errors are persistent over time. Substantial changes in the current balance of greenhouse warming and sulphate aerosol cooling would, however, increase the uncertainty. Unlike 50-year warming rates, the final equilibrium warming after the atmospheric composition stabilizes remains very uncertain, despite the evidence provided by the emerging signal.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N1732896c71714281a768529630f7b8eb
41 Nc8f6008918e5404eb61371c3370bcaf0
42 sg:journal.1018957
43 schema:name Quantifying the uncertainty in forecasts of anthropogenic climate change
44 schema:pagination 617
45 schema:productId N12fb9b8c71f14bc9804c2ae1927fb1d5
46 N2c391b52f58b48c39a8ea435aebf7608
47 N3d44b33325c542fc99a773fa18d573b9
48 Ndd32e5f969e0416b9ddb8729049540b3
49 Nfca8385079764341aea68f2b08a5477d
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
51 https://doi.org/10.1038/35036559
52 schema:sdDatePublished 2019-04-11T12:22
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N581c78a7b5a245a99de6656ccff36d69
55 schema:url https://www.nature.com/articles/35036559
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N12fb9b8c71f14bc9804c2ae1927fb1d5 schema:name dimensions_id
60 schema:value pub.1016303772
61 rdf:type schema:PropertyValue
62 N1732896c71714281a768529630f7b8eb schema:volumeNumber 407
63 rdf:type schema:PublicationVolume
64 N2c391b52f58b48c39a8ea435aebf7608 schema:name pubmed_id
65 schema:value 11034207
66 rdf:type schema:PropertyValue
67 N387298e200a446578511bd535687ce8e rdf:first sg:person.015667030077.29
68 rdf:rest N530006cbb80e4473b251376f9a998b46
69 N3d44b33325c542fc99a773fa18d573b9 schema:name nlm_unique_id
70 schema:value 0410462
71 rdf:type schema:PropertyValue
72 N530006cbb80e4473b251376f9a998b46 rdf:first sg:person.0616304361.65
73 rdf:rest Ne40b7467e2f24ef99ed2eadc8580237d
74 N581c78a7b5a245a99de6656ccff36d69 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N874838cfd43946e7b5765da92e839a3b rdf:first sg:person.0600474550.17
77 rdf:rest N387298e200a446578511bd535687ce8e
78 Nc8f6008918e5404eb61371c3370bcaf0 schema:issueNumber 6804
79 rdf:type schema:PublicationIssue
80 Ndd32e5f969e0416b9ddb8729049540b3 schema:name doi
81 schema:value 10.1038/35036559
82 rdf:type schema:PropertyValue
83 Ne40b7467e2f24ef99ed2eadc8580237d rdf:first sg:person.013604667231.83
84 rdf:rest Nf837339eacea4fb6a5c4f14146d628b4
85 Neaa8d542dbad441f87aa68e94680f909 schema:name §Geophysical Fluid Dynamics Laboratory/NOAA , PO Box 308, Princeton, New Jersey 08542-0308, USA
86 rdf:type schema:Organization
87 Nf837339eacea4fb6a5c4f14146d628b4 rdf:first sg:person.014151466245.18
88 rdf:rest rdf:nil
89 Nfca8385079764341aea68f2b08a5477d schema:name readcube_id
90 schema:value 4daf043fcd06f1bf5ec24939f951936aa4ed632e1d488588539ef888b82466fd
91 rdf:type schema:PropertyValue
92 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
93 schema:name Earth Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Geography and Environmental Geoscience
97 rdf:type schema:DefinedTerm
98 sg:journal.1018957 schema:issn 0090-0028
99 1476-4687
100 schema:name Nature
101 rdf:type schema:Periodical
102 sg:person.013604667231.83 schema:affiliation https://www.grid.ac/institutes/grid.450268.d
103 schema:familyName Schnur
104 schema:givenName Reiner
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013604667231.83
106 rdf:type schema:Person
107 sg:person.014151466245.18 schema:affiliation Neaa8d542dbad441f87aa68e94680f909
108 schema:familyName Delworth
109 schema:givenName Thomas L.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151466245.18
111 rdf:type schema:Person
112 sg:person.015667030077.29 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
113 schema:familyName Stott
114 schema:givenName Peter A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
116 rdf:type schema:Person
117 sg:person.0600474550.17 schema:affiliation https://www.grid.ac/institutes/grid.76978.37
118 schema:familyName Allen
119 schema:givenName Myles R.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17
121 rdf:type schema:Person
122 sg:person.0616304361.65 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
123 schema:familyName Mitchell
124 schema:givenName John F. B.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616304361.65
126 rdf:type schema:Person
127 sg:pub.10.1007/978-94-015-8719-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025269698
128 https://doi.org/10.1007/978-94-015-8719-8_2
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s003820050155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043746611
131 https://doi.org/10.1007/s003820050155
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s003820050185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008860100
134 https://doi.org/10.1007/s003820050185
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s003820050186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008218600
137 https://doi.org/10.1007/s003820050186
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s003820050196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047759135
140 https://doi.org/10.1007/s003820050196
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s003820050221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030324527
143 https://doi.org/10.1007/s003820050221
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s003820050224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042912048
146 https://doi.org/10.1007/s003820050224
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s003820050291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007895196
149 https://doi.org/10.1007/s003820050291
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/19745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052898494
152 https://doi.org/10.1038/19745
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/21164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310835
155 https://doi.org/10.1038/21164
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/21170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011881242
158 https://doi.org/10.1038/21170
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/35041539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011328414
161 https://doi.org/10.1038/35041539
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/376501a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002349860
164 https://doi.org/10.1038/376501a0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/382039a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029787674
167 https://doi.org/10.1038/382039a0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/44266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034790274
170 https://doi.org/10.1038/44266
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0040-1625(99)00099-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052930785
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/es00010a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055484536
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1029/1999gl010859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020288244
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/1999jd900965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040651749
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1039/an9871200377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048956244
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1073/pnas.94.16.8314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012733304
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.229.4716.857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062530669
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.287.5461.2246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568869
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1137/1.9781611971002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098553836
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1175/1520-0442(1996)009<2281:dggicc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029114992
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1175/1520-0442(1997)010<0245:omogwb>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005274886
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1175/1520-0442(1998)011<0563:dcsits>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051865516
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1175/1520-0442(1998)011<3282:sddocc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017095751
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1175/1520-0442(1999)012<3004:tccswa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015487960
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1175/1520-0477(2000)081<0313:tcmipc>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006286268
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.17100.37 schema:alternateName Met Office
203 schema:name †Hadley Centre for Climate Prediction and Research, The Meteorological Office, London Road, Bracknell RG12 2SZ, UK
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.450268.d schema:alternateName Max Planck Institute for Meteorology
206 schema:name ‡Max-Planck-Institut für Meteorologie , Bundesstrasse 55, 20146, Hamburg , Germany
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.76978.37 schema:alternateName Rutherford Appleton Laboratory
209 schema:name *Space Science and Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...