An SNP map of the human genome generated by reduced representation shotgun sequencing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

David Altshuler, Victor J. Pollara, Chris R. Cowles, William J. Van Etten, Jennifer Baldwin, Lauren Linton, Eric S. Lander

ABSTRACT

Most genomic variation is attributable to single nucleotide polymorphisms (SNPs), which therefore offer the highest resolution for tracking disease genes and population history1,2,3. It has been proposed that a dense map of 30,000–500,000 SNPs can be used to scan the human genome for haplotypes associated with common diseases4,5,6. Here we describe a simple but powerful method, called reduced representation shotgun (RRS) sequencing, for creating SNP maps. RRS re-samples specific subsets of the genome from several individuals, and compares the resulting sequences using a highly accurate SNP detection algorithm. The method can be extended by alignment to available genome sequence, increasing the yield of SNPs and providing map positions. These methods are being used by The SNP Consortium, an international collaboration of academic centres, pharmaceutical companies and a private foundation, to discover and release at least 300,000 human SNPs. We have discovered 47,172 human SNPs by RRS, and in total the Consortium has identified 148,459 SNPs. More broadly, RRS facilitates the rapid, inexpensive construction of SNP maps in biomedically and agriculturally important species. SNPs discovered by RRS also offer unique advantages for large-scale genotyping. More... »

PAGES

513-516

Journal

TITLE

Nature

ISSUE

6803

VOLUME

407

Related Patents

  • Complexity Management Of Genomic Dna
  • Muteins Of The Pyrroline-5-Carboxylate Reductase 1
  • High Throughput Screening Of Populations Carrying Naturally Occurring Mutations
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Method For High-Throughput Aflp-Based Polymorphism Detection
  • Dna Library And Preparation Method Thereof, And Method And Device For Detecting Snps
  • High Throughput Screening Of Populations Carrying Naturally Occurring Mutations
  • Differential Enzymatic Fragmentation By Whole Genome Amplification
  • High Throughput Screening Of Populations Carrying Naturally Occurring Mutations
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Method For High-Throughput Aflp-Based Polymorphism Detection
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Double Gate Ion Sensitive Field Effect Transistor
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Methods For Placing, Accepting, And Filling Orders For Products And Services
  • Method For High-Throughput Aflp-Based Polymorphism Detection
  • Genotyping By Next-Generation Sequencing
  • Method For Identifying The Source Of An Amplicon
  • Genotyping By Next-Generation Sequencing
  • Dna Library, Preparation Method Thereof, And Device For Detecting Snps
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Methods And Systems For Medical Sequencing Analysis
  • Method For High-Throughput Aflp-Based Polymorphism Detection
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Screening Nucleic Acid Sample And Detecting Nucleotide Sequences Polymorphisms; Obtain Mammalian Nucleic Acid Sequence, Determine Sequence, Compare To Control, Detect Adjustment, Expose Drug, Monitor And Evaluate Response
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • High Throughput Detection Of Molecular Markers Based On Aflp And High Through-Put Sequencing
  • Method For High-Throughput Aflp-Based Polymorphism Detection
  • High Throughput Screening Of Mutagenized Populations
  • Method For High-Throughput Aflp-Based Polymorphism Detection
  • Haplotype Structures Of Chromosome 21
  • High Throughput Screening Of Populations Carrying Naturally Occuring Mutations
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Dna Library And Preparation Method Thereof, And Method And Device For Detecting Snps
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Haplotype Determination
  • High Throughput Screening Of Populations Carrying Naturally Occurring Mutations
  • High Throughput Screening Of Mutagenized Populations
  • High Throughput Screening Of Populations Carrying Naturally Occurring Mutations
  • Method For High-Throughput Aflp-Based Polymorphism Detection
  • Differential Enzymatic Fragmentation By Whole Genome Amplification
  • Strategies For High Throughput Identification And Detection Of Polymorphisms
  • Method For High-Throughput Aflp-Based Polymorphism Detection
  • Methods For Placing, Accepting, And Filling Orders For Products And Services
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35035083

    DOI

    http://dx.doi.org/10.1038/35035083

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031098838

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11029002


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Medicine Massachusetts General Hospital, Diabetes Unit, Harvard Medical School, 02114, Boston, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA", 
                "Department of Medicine Massachusetts General Hospital, Diabetes Unit, Harvard Medical School, 02114, Boston, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Altshuler", 
            "givenName": "David", 
            "id": "sg:person.011574434444.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574434444.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.270301.7", 
              "name": [
                "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pollara", 
            "givenName": "Victor J.", 
            "id": "sg:person.01355232323.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355232323.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.270301.7", 
              "name": [
                "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cowles", 
            "givenName": "Chris R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.270301.7", 
              "name": [
                "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Etten", 
            "givenName": "William J.", 
            "id": "sg:person.0744162024.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744162024.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.270301.7", 
              "name": [
                "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baldwin", 
            "givenName": "Jennifer", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.270301.7", 
              "name": [
                "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Linton", 
            "givenName": "Lauren", 
            "id": "sg:person.01260464330.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260464330.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA", 
                "Department of Biology, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lander", 
            "givenName": "Eric S.", 
            "id": "sg:person.01260666165.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260666165.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35035089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033237601", 
              "https://doi.org/10.1038/35035089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1192-204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049816422", 
              "https://doi.org/10.1038/ng1192-204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/70570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011138564", 
              "https://doi.org/10.1038/70570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008973203", 
              "https://doi.org/10.1038/10290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/6851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039024064", 
              "https://doi.org/10.1038/6851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/9642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052869833", 
              "https://doi.org/10.1038/9642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011881979", 
              "https://doi.org/10.1038/10297"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-09", 
        "datePublishedReg": "2000-09-01", 
        "description": "Most genomic variation is attributable to single nucleotide polymorphisms (SNPs), which therefore offer the highest resolution for tracking disease genes and population history1,2,3. It has been proposed that a dense map of 30,000\u2013500,000 SNPs can be used to scan the human genome for haplotypes associated with common diseases4,5,6. Here we describe a simple but powerful method, called reduced representation shotgun (RRS) sequencing, for creating SNP maps. RRS re-samples specific subsets of the genome from several individuals, and compares the resulting sequences using a highly accurate SNP detection algorithm. The method can be extended by alignment to available genome sequence, increasing the yield of SNPs and providing map positions. These methods are being used by The SNP Consortium, an international collaboration of academic centres, pharmaceutical companies and a private foundation, to discover and release at least 300,000 human SNPs. We have discovered 47,172 human SNPs by RRS, and in total the\u00a0Consortium has identified 148,459 SNPs. More broadly, RRS\u00a0facilitates the rapid, inexpensive construction of SNP maps in\u00a0biomedically and agriculturally important species. SNPs discovered by RRS also offer unique advantages for large-scale genotyping.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/35035083", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6803", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "407"
          }
        ], 
        "keywords": [
          "human single nucleotide polymorphisms", 
          "single nucleotide polymorphisms", 
          "SNP map", 
          "human genome", 
          "shotgun sequencing", 
          "available genome sequences", 
          "large-scale genotyping", 
          "genome sequence", 
          "map position", 
          "genomic variation", 
          "SNP Consortium", 
          "important species", 
          "disease genes", 
          "genome", 
          "nucleotide polymorphisms", 
          "specific subset", 
          "sequencing", 
          "sequence", 
          "dense map", 
          "genes", 
          "species", 
          "consortium", 
          "haplotypes", 
          "powerful method", 
          "polymorphism", 
          "genotyping", 
          "maps", 
          "population", 
          "high resolution", 
          "variation", 
          "yield", 
          "alignment", 
          "RRS", 
          "subset", 
          "unique advantages", 
          "individuals", 
          "inexpensive construction", 
          "international collaboration", 
          "resolution", 
          "position", 
          "total", 
          "foundation", 
          "pharmaceutical companies", 
          "method", 
          "RR", 
          "advantages", 
          "construction", 
          "center", 
          "collaboration", 
          "private foundations", 
          "algorithm", 
          "detection algorithm", 
          "companies", 
          "academic centers"
        ], 
        "name": "An SNP map of the human genome generated by reduced representation shotgun sequencing", 
        "pagination": "513-516", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031098838"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35035083"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11029002"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35035083", 
          "https://app.dimensions.ai/details/publication/pub.1031098838"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_326.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/35035083"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35035083'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35035083'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35035083'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35035083'


     

    This table displays all metadata directly associated to this object as RDF triples.

    227 TRIPLES      21 PREDICATES      96 URIs      81 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35035083 schema:about N09184c1609c349fc857c6b69d7e0fe64
    2 N3fd41956c53c4550a5edceb1c2eea8e4
    3 N572df7e176ec4244b948ea5e50ad5779
    4 N5e44d0816bf54e298b18b051ab26f5e0
    5 N73995d8d4dbf4a6987e157a1a83e8aaf
    6 Nca3b67dcc87d4a6884702e8b62d45ed5
    7 Ndadf33bebab1429aaf3b8a4c398612b8
    8 Nde3f0ccaddf94f37a243c6e7ce04d2d5
    9 Nea36370262374de598e1e21c72405d5d
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author Ncdbc746b336a440c9e78f9a5da99f44a
    13 schema:citation sg:pub.10.1038/10290
    14 sg:pub.10.1038/10297
    15 sg:pub.10.1038/35035089
    16 sg:pub.10.1038/6851
    17 sg:pub.10.1038/70570
    18 sg:pub.10.1038/9642
    19 sg:pub.10.1038/ng1192-204
    20 schema:datePublished 2000-09
    21 schema:datePublishedReg 2000-09-01
    22 schema:description Most genomic variation is attributable to single nucleotide polymorphisms (SNPs), which therefore offer the highest resolution for tracking disease genes and population history1,2,3. It has been proposed that a dense map of 30,000–500,000 SNPs can be used to scan the human genome for haplotypes associated with common diseases4,5,6. Here we describe a simple but powerful method, called reduced representation shotgun (RRS) sequencing, for creating SNP maps. RRS re-samples specific subsets of the genome from several individuals, and compares the resulting sequences using a highly accurate SNP detection algorithm. The method can be extended by alignment to available genome sequence, increasing the yield of SNPs and providing map positions. These methods are being used by The SNP Consortium, an international collaboration of academic centres, pharmaceutical companies and a private foundation, to discover and release at least 300,000 human SNPs. We have discovered 47,172 human SNPs by RRS, and in total the Consortium has identified 148,459 SNPs. More broadly, RRS facilitates the rapid, inexpensive construction of SNP maps in biomedically and agriculturally important species. SNPs discovered by RRS also offer unique advantages for large-scale genotyping.
    23 schema:genre article
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N0ac68157287f45f485b885fbdc859f16
    26 N20323dfb9db54c3480ebdc2389adee4b
    27 sg:journal.1018957
    28 schema:keywords RR
    29 RRS
    30 SNP Consortium
    31 SNP map
    32 academic centers
    33 advantages
    34 algorithm
    35 alignment
    36 available genome sequences
    37 center
    38 collaboration
    39 companies
    40 consortium
    41 construction
    42 dense map
    43 detection algorithm
    44 disease genes
    45 foundation
    46 genes
    47 genome
    48 genome sequence
    49 genomic variation
    50 genotyping
    51 haplotypes
    52 high resolution
    53 human genome
    54 human single nucleotide polymorphisms
    55 important species
    56 individuals
    57 inexpensive construction
    58 international collaboration
    59 large-scale genotyping
    60 map position
    61 maps
    62 method
    63 nucleotide polymorphisms
    64 pharmaceutical companies
    65 polymorphism
    66 population
    67 position
    68 powerful method
    69 private foundations
    70 resolution
    71 sequence
    72 sequencing
    73 shotgun sequencing
    74 single nucleotide polymorphisms
    75 species
    76 specific subset
    77 subset
    78 total
    79 unique advantages
    80 variation
    81 yield
    82 schema:name An SNP map of the human genome generated by reduced representation shotgun sequencing
    83 schema:pagination 513-516
    84 schema:productId N3a0780fa6283468f9e86122c7102bc78
    85 Nce1f5891a7f34c05a02a20f2c48e67d2
    86 Ncecd33203bd94104a89546b448d32b11
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031098838
    88 https://doi.org/10.1038/35035083
    89 schema:sdDatePublished 2022-08-04T16:54
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher N7c2aa91379e745b4bf8bdf4cfa6e0d06
    92 schema:url https://doi.org/10.1038/35035083
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N09184c1609c349fc857c6b69d7e0fe64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Chromosome Mapping
    98 rdf:type schema:DefinedTerm
    99 N0ac68157287f45f485b885fbdc859f16 schema:volumeNumber 407
    100 rdf:type schema:PublicationVolume
    101 N1c38c8b942c2453f9e69b58663d04daf rdf:first Nb3757587436a4badb811476ac273f29f
    102 rdf:rest Na1d8b10a306741599f6a6ccd5e73f4a0
    103 N20323dfb9db54c3480ebdc2389adee4b schema:issueNumber 6803
    104 rdf:type schema:PublicationIssue
    105 N2d378d74fdef4101b5a0d7469f1023c4 rdf:first sg:person.01260666165.62
    106 rdf:rest rdf:nil
    107 N3a0780fa6283468f9e86122c7102bc78 schema:name doi
    108 schema:value 10.1038/35035083
    109 rdf:type schema:PropertyValue
    110 N3fd41956c53c4550a5edceb1c2eea8e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Algorithms
    112 rdf:type schema:DefinedTerm
    113 N572df7e176ec4244b948ea5e50ad5779 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Polymorphism, Single Nucleotide
    115 rdf:type schema:DefinedTerm
    116 N5e44d0816bf54e298b18b051ab26f5e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Gene Library
    118 rdf:type schema:DefinedTerm
    119 N73995d8d4dbf4a6987e157a1a83e8aaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Sequence Alignment
    121 rdf:type schema:DefinedTerm
    122 N7c2aa91379e745b4bf8bdf4cfa6e0d06 schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 N88a3bfb5a1f3496f8996933d3d95d086 schema:affiliation grid-institutes:grid.270301.7
    125 schema:familyName Baldwin
    126 schema:givenName Jennifer
    127 rdf:type schema:Person
    128 N9a55902c9bd449e19c38df258bece47d rdf:first sg:person.01260464330.97
    129 rdf:rest N2d378d74fdef4101b5a0d7469f1023c4
    130 Na1d8b10a306741599f6a6ccd5e73f4a0 rdf:first sg:person.0744162024.36
    131 rdf:rest Nfaf6468f348540679b19c412290f2967
    132 Nb3757587436a4badb811476ac273f29f schema:affiliation grid-institutes:grid.270301.7
    133 schema:familyName Cowles
    134 schema:givenName Chris R.
    135 rdf:type schema:Person
    136 Nca3b67dcc87d4a6884702e8b62d45ed5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Molecular Sequence Data
    138 rdf:type schema:DefinedTerm
    139 Ncdbc746b336a440c9e78f9a5da99f44a rdf:first sg:person.011574434444.03
    140 rdf:rest Ndd5d1a91e3ff484b9398db83d7d408b1
    141 Nce1f5891a7f34c05a02a20f2c48e67d2 schema:name pubmed_id
    142 schema:value 11029002
    143 rdf:type schema:PropertyValue
    144 Ncecd33203bd94104a89546b448d32b11 schema:name dimensions_id
    145 schema:value pub.1031098838
    146 rdf:type schema:PropertyValue
    147 Ndadf33bebab1429aaf3b8a4c398612b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Sequence Analysis, DNA
    149 rdf:type schema:DefinedTerm
    150 Ndd5d1a91e3ff484b9398db83d7d408b1 rdf:first sg:person.01355232323.01
    151 rdf:rest N1c38c8b942c2453f9e69b58663d04daf
    152 Nde3f0ccaddf94f37a243c6e7ce04d2d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Humans
    154 rdf:type schema:DefinedTerm
    155 Nea36370262374de598e1e21c72405d5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Genome, Human
    157 rdf:type schema:DefinedTerm
    158 Nfaf6468f348540679b19c412290f2967 rdf:first N88a3bfb5a1f3496f8996933d3d95d086
    159 rdf:rest N9a55902c9bd449e19c38df258bece47d
    160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Biological Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Genetics
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1018957 schema:issn 0028-0836
    167 1476-4687
    168 schema:name Nature
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.011574434444.03 schema:affiliation grid-institutes:grid.32224.35
    172 schema:familyName Altshuler
    173 schema:givenName David
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574434444.03
    175 rdf:type schema:Person
    176 sg:person.01260464330.97 schema:affiliation grid-institutes:grid.270301.7
    177 schema:familyName Linton
    178 schema:givenName Lauren
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260464330.97
    180 rdf:type schema:Person
    181 sg:person.01260666165.62 schema:affiliation grid-institutes:grid.116068.8
    182 schema:familyName Lander
    183 schema:givenName Eric S.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260666165.62
    185 rdf:type schema:Person
    186 sg:person.01355232323.01 schema:affiliation grid-institutes:grid.270301.7
    187 schema:familyName Pollara
    188 schema:givenName Victor J.
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355232323.01
    190 rdf:type schema:Person
    191 sg:person.0744162024.36 schema:affiliation grid-institutes:grid.270301.7
    192 schema:familyName Van Etten
    193 schema:givenName William J.
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744162024.36
    195 rdf:type schema:Person
    196 sg:pub.10.1038/10290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973203
    197 https://doi.org/10.1038/10290
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/10297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011881979
    200 https://doi.org/10.1038/10297
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/35035089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033237601
    203 https://doi.org/10.1038/35035089
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/6851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039024064
    206 https://doi.org/10.1038/6851
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/70570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011138564
    209 https://doi.org/10.1038/70570
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/9642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052869833
    212 https://doi.org/10.1038/9642
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ng1192-204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049816422
    215 https://doi.org/10.1038/ng1192-204
    216 rdf:type schema:CreativeWork
    217 grid-institutes:grid.116068.8 schema:alternateName Department of Biology, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
    218 schema:name Department of Biology, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
    219 Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA
    220 rdf:type schema:Organization
    221 grid-institutes:grid.270301.7 schema:alternateName Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA
    222 schema:name Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA
    223 rdf:type schema:Organization
    224 grid-institutes:grid.32224.35 schema:alternateName Department of Medicine Massachusetts General Hospital, Diabetes Unit, Harvard Medical School, 02114, Boston, Massachusetts, USA
    225 schema:name Department of Medicine Massachusetts General Hospital, Diabetes Unit, Harvard Medical School, 02114, Boston, Massachusetts, USA
    226 Whitehead Institute/MIT Center for Genome Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts, USA
    227 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...