Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon

ABSTRACT

Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Although promising electrode systems have recently been proposed, their lifespans are limited by Li-alloying agglomeration or the growth of passivation layers, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g(-1), with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1-5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries. More... »

PAGES

496

Journal

TITLE

Nature

ISSUE

6803

VOLUME

407

Related Patents

  • Lithium-Ion Battery
  • Negative Electrode Active Material, Method For Producing The Negative Electrode Active Material, And Lithium Ion Secondary Battery Using The Negative Electrode Active Material
  • Method Of Preventing Over-Discharge Of Battery
  • Negative Electrode Active Material And Use Of Same
  • Bacteria/Transition Metal Oxides Organic-Inorganic Composite And Method For Manufacturing The Same
  • Lithium Ion Secondary Cell
  • Protective Coatings For Conversion Material Cathodes
  • Negative Electrode Active Material, Method For Producing The Negative Electrode Active Material, And Lithium Ion Secondary Battery Using The Negative Electrode Active Material
  • Lithium-Ion Battery
  • Nanostructured Materials For Electrochemical Conversion Reactions
  • Metal Fluoride And Phosphate Nanocomposites As Electrode Materials
  • Hybrid Energy Storage Device Production
  • Hybrid Energy Storage Device Charging
  • Energy Storage Devices Including Support Filaments
  • Hybrid Energy Storage Devices Including Surface Effect Dominant Sites
  • Nanostructured Materials For Electrochemical Conversion Reactions
  • Negative-Electrode Material And Lithium Secondary Battery Using Same
  • Composite Material
  • Lithium-Ion Battery
  • Lithium-Ion Battery
  • Nanowire Battery Methods And Arrangements
  • Medical Device Having Lithium-Ion Battery
  • Negative-Limited Lithium-Ion Battery
  • Energy Storage Devices
  • Lithium-Ion Battery
  • Lithium-Ion Battery
  • Negative-Electrode Active Material For Lithium Ion Secondary Cell, And Negative Electrode And Secondary Cell Using Negative-Electrode Active Material For Lithium Ion Secondary Cell
  • Oil-Based Drilling Fluids Containing An Alkaline-Earth Diamondoid Compound As Rheology Modifier
  • Negative-Electrode Active Material For Lithium Ion Secondary Cell, And Negative Electrode And Secondary Cell Using Negative-Electrode Active Material For Lithium Ion Secondary Cell
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35035045

    DOI

    http://dx.doi.org/10.1038/35035045

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051213847

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11028997


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
              "id": "https://www.grid.ac/institutes/grid.463728.c", 
              "name": [
                "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne, CNRS UPRES A 6007, 33 rue Saint Leu , F-80039, Amiens, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poizot", 
            "givenName": "P.", 
            "id": "sg:person.015752111777.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752111777.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
              "id": "https://www.grid.ac/institutes/grid.463728.c", 
              "name": [
                "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne, CNRS UPRES A 6007, 33 rue Saint Leu , F-80039, Amiens, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Laruelle", 
            "givenName": "S.", 
            "id": "sg:person.01330435361.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330435361.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
              "id": "https://www.grid.ac/institutes/grid.463728.c", 
              "name": [
                "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne, CNRS UPRES A 6007, 33 rue Saint Leu , F-80039, Amiens, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grugeon", 
            "givenName": "S.", 
            "id": "sg:person.016301653457.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301653457.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
              "id": "https://www.grid.ac/institutes/grid.463728.c", 
              "name": [
                "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne, CNRS UPRES A 6007, 33 rue Saint Leu , F-80039, Amiens, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dupont", 
            "givenName": "L.", 
            "id": "sg:person.01356362311.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356362311.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
              "id": "https://www.grid.ac/institutes/grid.463728.c", 
              "name": [
                "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne, CNRS UPRES A 6007, 33 rue Saint Leu , F-80039, Amiens, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tarascon", 
            "givenName": "J-M.", 
            "id": "sg:person.01364322774.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364322774.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1149/1.1838150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002804478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1391565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003513095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2220987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008285949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.276.5317.1395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016558883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1390819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034956478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1836594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041835154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1391622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050115684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-2738(99)00293-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051688636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-7753(97)84142-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054656228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.13.2287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060465746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.13.2287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060465746"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-09", 
        "datePublishedReg": "2000-09-01", 
        "description": "Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Although promising electrode systems have recently been proposed, their lifespans are limited by Li-alloying agglomeration or the growth of passivation layers, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g(-1), with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1-5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/35035045", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6803", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "407"
          }
        ], 
        "name": "Nano-sized transition-metal oxides as negative-electrode materials for\nlithium-ion batteries", 
        "pagination": "496", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f3f662d2e6ea60844100ef2ede68bf704e25dbce3a73918119f41896bab3241f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11028997"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35035045"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051213847"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35035045", 
          "https://app.dimensions.ai/details/publication/pub.1051213847"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/35035045"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35035045'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35035045'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35035045'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35035045'


     

    This table displays all metadata directly associated to this object as RDF triples.

    127 TRIPLES      21 PREDICATES      39 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35035045 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N4b31775a6c57439c81a5b56cf7d1af0b
    4 schema:citation https://doi.org/10.1016/s0167-2738(99)00293-3
    5 https://doi.org/10.1016/s0378-7753(97)84142-0
    6 https://doi.org/10.1103/physreva.13.2287
    7 https://doi.org/10.1126/science.276.5317.1395
    8 https://doi.org/10.1149/1.1390819
    9 https://doi.org/10.1149/1.1391565
    10 https://doi.org/10.1149/1.1391622
    11 https://doi.org/10.1149/1.1836594
    12 https://doi.org/10.1149/1.1838150
    13 https://doi.org/10.1149/1.2220987
    14 schema:datePublished 2000-09
    15 schema:datePublishedReg 2000-09-01
    16 schema:description Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Although promising electrode systems have recently been proposed, their lifespans are limited by Li-alloying agglomeration or the growth of passivation layers, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g(-1), with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1-5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf Ndf449621ecb842b18f0b01eec1c866db
    21 Nf77508a3d4e64f6cb3a0638be48af9ec
    22 sg:journal.1018957
    23 schema:name Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
    24 schema:pagination 496
    25 schema:productId N1b4017ac19cf4c41bf266c3adcd1a8fe
    26 N22880a919a2a4068bf39ba208afea30b
    27 N390dffa0fda44d2aa4a8a1e2183d21d8
    28 N9a02d79d38924029904a36bf746ffa89
    29 Ne0a2cb5fd690452394b8c50d0f823333
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051213847
    31 https://doi.org/10.1038/35035045
    32 schema:sdDatePublished 2019-04-11T12:23
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nde07b9e99bf5417a87c883118b2cd01b
    35 schema:url https://www.nature.com/articles/35035045
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N1b4017ac19cf4c41bf266c3adcd1a8fe schema:name dimensions_id
    40 schema:value pub.1051213847
    41 rdf:type schema:PropertyValue
    42 N1f24b3223e0c43fe9a836370a97143f7 rdf:first sg:person.01330435361.36
    43 rdf:rest N361094feb1bb4e6296ef1041d9c6a981
    44 N22880a919a2a4068bf39ba208afea30b schema:name doi
    45 schema:value 10.1038/35035045
    46 rdf:type schema:PropertyValue
    47 N361094feb1bb4e6296ef1041d9c6a981 rdf:first sg:person.016301653457.42
    48 rdf:rest N42499d41cc114d808f88514467d659ee
    49 N390dffa0fda44d2aa4a8a1e2183d21d8 schema:name pubmed_id
    50 schema:value 11028997
    51 rdf:type schema:PropertyValue
    52 N42499d41cc114d808f88514467d659ee rdf:first sg:person.01356362311.16
    53 rdf:rest Ne2130fd8a4964a178339f297303d9cde
    54 N4b31775a6c57439c81a5b56cf7d1af0b rdf:first sg:person.015752111777.54
    55 rdf:rest N1f24b3223e0c43fe9a836370a97143f7
    56 N9a02d79d38924029904a36bf746ffa89 schema:name readcube_id
    57 schema:value f3f662d2e6ea60844100ef2ede68bf704e25dbce3a73918119f41896bab3241f
    58 rdf:type schema:PropertyValue
    59 Nde07b9e99bf5417a87c883118b2cd01b schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 Ndf449621ecb842b18f0b01eec1c866db schema:issueNumber 6803
    62 rdf:type schema:PublicationIssue
    63 Ne0a2cb5fd690452394b8c50d0f823333 schema:name nlm_unique_id
    64 schema:value 0410462
    65 rdf:type schema:PropertyValue
    66 Ne2130fd8a4964a178339f297303d9cde rdf:first sg:person.01364322774.51
    67 rdf:rest rdf:nil
    68 Nf77508a3d4e64f6cb3a0638be48af9ec schema:volumeNumber 407
    69 rdf:type schema:PublicationVolume
    70 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Chemical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Physical Chemistry (incl. Structural)
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1018957 schema:issn 0090-0028
    77 1476-4687
    78 schema:name Nature
    79 rdf:type schema:Periodical
    80 sg:person.01330435361.36 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
    81 schema:familyName Laruelle
    82 schema:givenName S.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330435361.36
    84 rdf:type schema:Person
    85 sg:person.01356362311.16 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
    86 schema:familyName Dupont
    87 schema:givenName L.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356362311.16
    89 rdf:type schema:Person
    90 sg:person.01364322774.51 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
    91 schema:familyName Tarascon
    92 schema:givenName J-M.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364322774.51
    94 rdf:type schema:Person
    95 sg:person.015752111777.54 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
    96 schema:familyName Poizot
    97 schema:givenName P.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752111777.54
    99 rdf:type schema:Person
    100 sg:person.016301653457.42 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
    101 schema:familyName Grugeon
    102 schema:givenName S.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301653457.42
    104 rdf:type schema:Person
    105 https://doi.org/10.1016/s0167-2738(99)00293-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051688636
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/s0378-7753(97)84142-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054656228
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1103/physreva.13.2287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060465746
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1126/science.276.5317.1395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016558883
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1149/1.1390819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034956478
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1149/1.1391565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003513095
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1149/1.1391622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050115684
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1149/1.1836594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041835154
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1149/1.1838150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002804478
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1149/1.2220987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008285949
    124 rdf:type schema:CreativeWork
    125 https://www.grid.ac/institutes/grid.463728.c schema:alternateName Laboratoire de Réactivité et Chimie des Solides
    126 schema:name Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007, 33 rue Saint Leu , F-80039, Amiens, France
    127 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...