Logical computation using algorithmic self-assembly of DNA triple-crossover molecules View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

Chengde Mao, Thomas H. LaBean, John H. Reif, Nadrian C. Seeman

ABSTRACT

Recent work has demonstrated the self-assembly of designed periodic two-dimensional arrays composed of DNA tiles, in which the intermolecular contacts are directed by 'sticky' ends. In a mathematical context, aperiodic mosaics may be formed by the self-assembly of 'Wang' tiles, a process that emulates the operation of a Turing machine. Macroscopic self-assembly has been used to perform computations; there is also a logical equivalence between DNA sticky ends and Wang tile edges. This suggests that the self-assembly of DNA-based tiles could be used to perform DNA-based computation. Algorithmic aperiodic self-assembly requires greater fidelity than periodic self-assembly, because correct tiles must compete with partially correct tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute four steps of a logical (cumulative XOR) operation on a string of binary bits. More... »

PAGES

493

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35035038

DOI

http://dx.doi.org/10.1038/35035038

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048486242

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11028996


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "*Department of Chemistry, New York University, New York, 10003, USA &"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mao", 
        "givenName": "Chengde", 
        "id": "sg:person.01220006007.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220006007.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "\u2020Department of Computer Science, Duke University, Durham, North Carolina 27707, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LaBean", 
        "givenName": "Thomas H.", 
        "id": "sg:person.01134242354.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134242354.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "\u2020Department of Computer Science, Duke University, Durham, North Carolina 27707, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reif", 
        "givenName": "John H.", 
        "id": "sg:person.01117132720.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117132720.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "*Department of Chemistry, New York University, New York, 10003, USA &"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seeman", 
        "givenName": "Nadrian C.", 
        "id": "sg:person.01155412761.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.97.4.1385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000843943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja993393e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010206052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja993393e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010206052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/28998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015431161", 
          "https://doi.org/10.1038/28998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/28998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015431161", 
          "https://doi.org/10.1038/28998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35003155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019148544", 
          "https://doi.org/10.1038/35003155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35003155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019148544", 
          "https://doi.org/10.1038/35003155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/21.10.2287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029576767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3773(19981217)37:23<3220::aid-anie3220>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036679025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja982824a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036975349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.3.984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038764966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9900398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045743884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja992392j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055872598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja992392j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055872598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5469.1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062569554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7973651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062650775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/dimacs/027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097022560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/dimacs/048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097022686"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-09", 
    "datePublishedReg": "2000-09-01", 
    "description": "Recent work has demonstrated the self-assembly of designed periodic two-dimensional arrays composed of DNA tiles, in which the intermolecular contacts are directed by 'sticky' ends. In a mathematical context, aperiodic mosaics may be formed by the self-assembly of 'Wang' tiles, a process that emulates the operation of a Turing machine. Macroscopic self-assembly has been used to perform computations; there is also a logical equivalence between DNA sticky ends and Wang tile edges. This suggests that the self-assembly of DNA-based tiles could be used to perform DNA-based computation. Algorithmic aperiodic self-assembly requires greater fidelity than periodic self-assembly, because correct tiles must compete with partially correct tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute four steps of a logical (cumulative XOR) operation on a string of binary bits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35035038", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6803", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "name": "Logical computation using algorithmic self-assembly of DNA triple-crossover\nmolecules", 
    "pagination": "493", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e6facec9abc254131cc37860240568ba358e877fb568d94e0809be1da9310d45"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11028996"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35035038"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048486242"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35035038", 
      "https://app.dimensions.ai/details/publication/pub.1048486242"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87100_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35035038"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35035038'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35035038'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35035038'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35035038'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      47 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35035038 schema:about N859a31e769e54e359d0965d25e78b3bb
2 N9aff6f9e09e240da80db7d438d982a43
3 Na9ff639851624648ad409e7e00c8f8ab
4 Nf5e86d9feed34d208f38f52b09cb3e8a
5 anzsrc-for:03
6 anzsrc-for:0303
7 schema:author N4650f807f80b4656bee0f600b6a91f59
8 schema:citation sg:pub.10.1038/28998
9 sg:pub.10.1038/35003155
10 https://doi.org/10.1002/(sici)1521-3773(19981217)37:23<3220::aid-anie3220>3.0.co;2-c
11 https://doi.org/10.1021/ja982824a
12 https://doi.org/10.1021/ja9900398
13 https://doi.org/10.1021/ja992392j
14 https://doi.org/10.1021/ja993393e
15 https://doi.org/10.1073/pnas.97.3.984
16 https://doi.org/10.1073/pnas.97.4.1385
17 https://doi.org/10.1090/dimacs/027
18 https://doi.org/10.1090/dimacs/048
19 https://doi.org/10.1093/nar/21.10.2287
20 https://doi.org/10.1126/science.288.5469.1223
21 https://doi.org/10.1126/science.7973651
22 schema:datePublished 2000-09
23 schema:datePublishedReg 2000-09-01
24 schema:description Recent work has demonstrated the self-assembly of designed periodic two-dimensional arrays composed of DNA tiles, in which the intermolecular contacts are directed by 'sticky' ends. In a mathematical context, aperiodic mosaics may be formed by the self-assembly of 'Wang' tiles, a process that emulates the operation of a Turing machine. Macroscopic self-assembly has been used to perform computations; there is also a logical equivalence between DNA sticky ends and Wang tile edges. This suggests that the self-assembly of DNA-based tiles could be used to perform DNA-based computation. Algorithmic aperiodic self-assembly requires greater fidelity than periodic self-assembly, because correct tiles must compete with partially correct tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute four steps of a logical (cumulative XOR) operation on a string of binary bits.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N54a17ada1f5c4f51b4b0894fcfe09cf0
29 Nace613c748484c48acec6f4bc35560e4
30 sg:journal.1018957
31 schema:name Logical computation using algorithmic self-assembly of DNA triple-crossover molecules
32 schema:pagination 493
33 schema:productId N358c1fd3ec6f4c3dbfead241316897cf
34 N840078c4eaaf4311aeb97b9802c6aac0
35 N86bdc42076274c499a9460d0e70fbe26
36 Ncc7ed4e193a14ffdbdee0904f5ebf32d
37 Ne890c3d326cd44f194c323215f65ddf0
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486242
39 https://doi.org/10.1038/35035038
40 schema:sdDatePublished 2019-04-11T12:24
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Na468ebd1f2f3478b95ba1341362f8f04
43 schema:url https://www.nature.com/articles/35035038
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N2ff23e348da44db9a9186a0c9ccaf30f rdf:first sg:person.01117132720.17
48 rdf:rest N4dd2998d16ec4200bbf8853e67746a84
49 N358c1fd3ec6f4c3dbfead241316897cf schema:name pubmed_id
50 schema:value 11028996
51 rdf:type schema:PropertyValue
52 N36322d2678f14a03aefe8c028106ce0c rdf:first sg:person.01134242354.29
53 rdf:rest N2ff23e348da44db9a9186a0c9ccaf30f
54 N4650f807f80b4656bee0f600b6a91f59 rdf:first sg:person.01220006007.27
55 rdf:rest N36322d2678f14a03aefe8c028106ce0c
56 N4dd2998d16ec4200bbf8853e67746a84 rdf:first sg:person.01155412761.86
57 rdf:rest rdf:nil
58 N54a17ada1f5c4f51b4b0894fcfe09cf0 schema:issueNumber 6803
59 rdf:type schema:PublicationIssue
60 N840078c4eaaf4311aeb97b9802c6aac0 schema:name nlm_unique_id
61 schema:value 0410462
62 rdf:type schema:PropertyValue
63 N859a31e769e54e359d0965d25e78b3bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Computational Biology
65 rdf:type schema:DefinedTerm
66 N86bdc42076274c499a9460d0e70fbe26 schema:name dimensions_id
67 schema:value pub.1048486242
68 rdf:type schema:PropertyValue
69 N9aff6f9e09e240da80db7d438d982a43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Nucleic Acid Conformation
71 rdf:type schema:DefinedTerm
72 Na468ebd1f2f3478b95ba1341362f8f04 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Na9ff639851624648ad409e7e00c8f8ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name DNA
76 rdf:type schema:DefinedTerm
77 Nace613c748484c48acec6f4bc35560e4 schema:volumeNumber 407
78 rdf:type schema:PublicationVolume
79 Ncc7ed4e193a14ffdbdee0904f5ebf32d schema:name readcube_id
80 schema:value e6facec9abc254131cc37860240568ba358e877fb568d94e0809be1da9310d45
81 rdf:type schema:PropertyValue
82 Ne890c3d326cd44f194c323215f65ddf0 schema:name doi
83 schema:value 10.1038/35035038
84 rdf:type schema:PropertyValue
85 Nf5e86d9feed34d208f38f52b09cb3e8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Algorithms
87 rdf:type schema:DefinedTerm
88 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
89 schema:name Chemical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
92 schema:name Macromolecular and Materials Chemistry
93 rdf:type schema:DefinedTerm
94 sg:journal.1018957 schema:issn 0090-0028
95 1476-4687
96 schema:name Nature
97 rdf:type schema:Periodical
98 sg:person.01117132720.17 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
99 schema:familyName Reif
100 schema:givenName John H.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117132720.17
102 rdf:type schema:Person
103 sg:person.01134242354.29 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
104 schema:familyName LaBean
105 schema:givenName Thomas H.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134242354.29
107 rdf:type schema:Person
108 sg:person.01155412761.86 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
109 schema:familyName Seeman
110 schema:givenName Nadrian C.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86
112 rdf:type schema:Person
113 sg:person.01220006007.27 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
114 schema:familyName Mao
115 schema:givenName Chengde
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220006007.27
117 rdf:type schema:Person
118 sg:pub.10.1038/28998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015431161
119 https://doi.org/10.1038/28998
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/35003155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019148544
122 https://doi.org/10.1038/35003155
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/(sici)1521-3773(19981217)37:23<3220::aid-anie3220>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1036679025
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/ja982824a schema:sameAs https://app.dimensions.ai/details/publication/pub.1036975349
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/ja9900398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045743884
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/ja992392j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055872598
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/ja993393e schema:sameAs https://app.dimensions.ai/details/publication/pub.1010206052
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1073/pnas.97.3.984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038764966
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1073/pnas.97.4.1385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000843943
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1090/dimacs/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097022560
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1090/dimacs/048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097022686
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/nar/21.10.2287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029576767
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/science.288.5469.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569554
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1126/science.7973651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062650775
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
149 schema:name *Department of Chemistry, New York University, New York, 10003, USA &
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
152 schema:name †Department of Computer Science, Duke University, Durham, North Carolina 27707, USA
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...