Interdecadal oscillations and the warming trend in global temperature time series View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-03

AUTHORS

M. Ghil, R. Vautard

ABSTRACT

THE ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis1 to analyse the time series of global surface air tem-peratures for the past 135 years2, allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 °C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Niño-Southern Oscillation (ENSO) phenomenon3. The interdecadal oscillations could be associated with changes in the extratropical ocean circulation4. The oscillatory components have combined (peak-to-peak) amplitudes of >0.2 °C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 °Cyr−1 will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades. More... »

PAGES

324-327

Journal

TITLE

Nature

ISSUE

6316

VOLUME

350

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/350324a0

DOI

http://dx.doi.org/10.1038/350324a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043191770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ghil", 
        "givenName": "M.", 
        "id": "sg:person.0666625474.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666625474.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Vautard", 
        "givenName": "R.", 
        "id": "sg:person.0637243716.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637243716.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0469(1986)043<0419:etdowa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018323254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/321827a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020091934", 
          "https://doi.org/10.1038/321827a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/310670a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020907399", 
          "https://doi.org/10.1038/310670a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1978)035<1771:mapost>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd092id11p13345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025791400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00138938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032154737", 
          "https://doi.org/10.1007/bf00138938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00138938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032154737", 
          "https://doi.org/10.1007/bf00138938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/322430a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032895113", 
          "https://doi.org/10.1038/322430a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1991)048<0752:ioitga>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040570574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/343709a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050941284", 
          "https://doi.org/10.1038/343709a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1982.12433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061445068"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-03", 
    "datePublishedReg": "1991-03-01", 
    "description": "THE ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis1 to analyse the time series of global surface air tem-peratures for the past 135 years2, allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 \u00b0C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Ni\u00f1o-Southern Oscillation (ENSO) phenomenon3. The interdecadal oscillations could be associated with changes in the extratropical ocean circulation4. The oscillatory components have combined (peak-to-peak) amplitudes of >0.2 \u00b0C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 \u00b0Cyr\u22121 will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/350324a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6316", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "350"
      }
    ], 
    "name": "Interdecadal oscillations and the warming trend in global temperature time series", 
    "pagination": "324-327", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cdbc9fa3fae062c9474eb2222b4f19481c8747380372a51f910f991733300c01"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/350324a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043191770"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/350324a0", 
      "https://app.dimensions.ai/details/publication/pub.1043191770"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/350324a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/350324a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/350324a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/350324a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/350324a0'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/350324a0 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Ncf5fa51ab2824af79335eb0527511378
4 schema:citation sg:pub.10.1007/bf00138938
5 sg:pub.10.1038/310670a0
6 sg:pub.10.1038/321827a0
7 sg:pub.10.1038/322430a0
8 sg:pub.10.1038/343709a0
9 https://doi.org/10.1029/jd092id11p13345
10 https://doi.org/10.1109/proc.1982.12433
11 https://doi.org/10.1175/1520-0469(1978)035<1771:mapost>2.0.co;2
12 https://doi.org/10.1175/1520-0469(1986)043<0419:etdowa>2.0.co;2
13 https://doi.org/10.1175/1520-0469(1991)048<0752:ioitga>2.0.co;2
14 schema:datePublished 1991-03
15 schema:datePublishedReg 1991-03-01
16 schema:description THE ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis1 to analyse the time series of global surface air tem-peratures for the past 135 years2, allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 °C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Niño-Southern Oscillation (ENSO) phenomenon3. The interdecadal oscillations could be associated with changes in the extratropical ocean circulation4. The oscillatory components have combined (peak-to-peak) amplitudes of >0.2 °C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 °Cyr−1 will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N6a44e7e417954138ac79cc4932077b34
21 Nffae5a5724874731b7cc7836ad10245c
22 sg:journal.1018957
23 schema:name Interdecadal oscillations and the warming trend in global temperature time series
24 schema:pagination 324-327
25 schema:productId N2ae6c89d5b7e40dc83136a00cb959bc4
26 N2ebf6fdf3f6d4697bd5c9a505668491d
27 N44ed3767fd2149f08a33612c17ce2dbf
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043191770
29 https://doi.org/10.1038/350324a0
30 schema:sdDatePublished 2019-04-10T18:57
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nd0b32829a233403e912aa084b22a7b53
33 schema:url http://www.nature.com/articles/350324a0
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N2ae6c89d5b7e40dc83136a00cb959bc4 schema:name readcube_id
38 schema:value cdbc9fa3fae062c9474eb2222b4f19481c8747380372a51f910f991733300c01
39 rdf:type schema:PropertyValue
40 N2ebf6fdf3f6d4697bd5c9a505668491d schema:name dimensions_id
41 schema:value pub.1043191770
42 rdf:type schema:PropertyValue
43 N44ed3767fd2149f08a33612c17ce2dbf schema:name doi
44 schema:value 10.1038/350324a0
45 rdf:type schema:PropertyValue
46 N6a44e7e417954138ac79cc4932077b34 schema:issueNumber 6316
47 rdf:type schema:PublicationIssue
48 Ncf5fa51ab2824af79335eb0527511378 rdf:first sg:person.0666625474.19
49 rdf:rest Ne3ab61f9d2a64fc28da377fb758ee3b4
50 Nd0b32829a233403e912aa084b22a7b53 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Ne3ab61f9d2a64fc28da377fb758ee3b4 rdf:first sg:person.0637243716.97
53 rdf:rest rdf:nil
54 Nffae5a5724874731b7cc7836ad10245c schema:volumeNumber 350
55 rdf:type schema:PublicationVolume
56 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
57 schema:name Earth Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
60 schema:name Oceanography
61 rdf:type schema:DefinedTerm
62 sg:journal.1018957 schema:issn 0090-0028
63 1476-4687
64 schema:name Nature
65 rdf:type schema:Periodical
66 sg:person.0637243716.97 schema:familyName Vautard
67 schema:givenName R.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637243716.97
69 rdf:type schema:Person
70 sg:person.0666625474.19 schema:familyName Ghil
71 schema:givenName M.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666625474.19
73 rdf:type schema:Person
74 sg:pub.10.1007/bf00138938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032154737
75 https://doi.org/10.1007/bf00138938
76 rdf:type schema:CreativeWork
77 sg:pub.10.1038/310670a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020907399
78 https://doi.org/10.1038/310670a0
79 rdf:type schema:CreativeWork
80 sg:pub.10.1038/321827a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020091934
81 https://doi.org/10.1038/321827a0
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/322430a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032895113
84 https://doi.org/10.1038/322430a0
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/343709a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050941284
87 https://doi.org/10.1038/343709a0
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1029/jd092id11p13345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025791400
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/proc.1982.12433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061445068
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1175/1520-0469(1978)035<1771:mapost>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356495
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1175/1520-0469(1986)043<0419:etdowa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018323254
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1175/1520-0469(1991)048<0752:ioitga>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040570574
98 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...