Interdecadal oscillations and the warming trend in global temperature time series View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-03

AUTHORS

M. Ghil, R. Vautard

ABSTRACT

THE ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis1 to analyse the time series of global surface air tem-peratures for the past 135 years2, allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 °C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Niño-Southern Oscillation (ENSO) phenomenon3. The interdecadal oscillations could be associated with changes in the extratropical ocean circulation4. The oscillatory components have combined (peak-to-peak) amplitudes of >0.2 °C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 °Cyr−1 will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades. More... »

PAGES

324-327

Journal

TITLE

Nature

ISSUE

6316

VOLUME

350

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/350324a0

DOI

http://dx.doi.org/10.1038/350324a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043191770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ghil", 
        "givenName": "M.", 
        "id": "sg:person.0666625474.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666625474.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Vautard", 
        "givenName": "R.", 
        "id": "sg:person.0637243716.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637243716.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0469(1986)043<0419:etdowa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018323254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/321827a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020091934", 
          "https://doi.org/10.1038/321827a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/310670a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020907399", 
          "https://doi.org/10.1038/310670a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1978)035<1771:mapost>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd092id11p13345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025791400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00138938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032154737", 
          "https://doi.org/10.1007/bf00138938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00138938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032154737", 
          "https://doi.org/10.1007/bf00138938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/322430a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032895113", 
          "https://doi.org/10.1038/322430a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1991)048<0752:ioitga>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040570574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/343709a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050941284", 
          "https://doi.org/10.1038/343709a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1982.12433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061445068"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-03", 
    "datePublishedReg": "1991-03-01", 
    "description": "THE ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis1 to analyse the time series of global surface air tem-peratures for the past 135 years2, allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 \u00b0C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Ni\u00f1o-Southern Oscillation (ENSO) phenomenon3. The interdecadal oscillations could be associated with changes in the extratropical ocean circulation4. The oscillatory components have combined (peak-to-peak) amplitudes of >0.2 \u00b0C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 \u00b0Cyr\u22121 will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/350324a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6316", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "350"
      }
    ], 
    "name": "Interdecadal oscillations and the warming trend in global temperature time series", 
    "pagination": "324-327", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cdbc9fa3fae062c9474eb2222b4f19481c8747380372a51f910f991733300c01"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/350324a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043191770"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/350324a0", 
      "https://app.dimensions.ai/details/publication/pub.1043191770"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/350324a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/350324a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/350324a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/350324a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/350324a0'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/350324a0 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Ne1f8ef84ffb04b979e239278d6b1f049
4 schema:citation sg:pub.10.1007/bf00138938
5 sg:pub.10.1038/310670a0
6 sg:pub.10.1038/321827a0
7 sg:pub.10.1038/322430a0
8 sg:pub.10.1038/343709a0
9 https://doi.org/10.1029/jd092id11p13345
10 https://doi.org/10.1109/proc.1982.12433
11 https://doi.org/10.1175/1520-0469(1978)035<1771:mapost>2.0.co;2
12 https://doi.org/10.1175/1520-0469(1986)043<0419:etdowa>2.0.co;2
13 https://doi.org/10.1175/1520-0469(1991)048<0752:ioitga>2.0.co;2
14 schema:datePublished 1991-03
15 schema:datePublishedReg 1991-03-01
16 schema:description THE ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis1 to analyse the time series of global surface air tem-peratures for the past 135 years2, allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 °C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Niño-Southern Oscillation (ENSO) phenomenon3. The interdecadal oscillations could be associated with changes in the extratropical ocean circulation4. The oscillatory components have combined (peak-to-peak) amplitudes of >0.2 °C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 °Cyr−1 will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N78ec888c4c974242926794b0ff08f594
21 N812415124ee94b27bdb1f6053ce053b3
22 sg:journal.1018957
23 schema:name Interdecadal oscillations and the warming trend in global temperature time series
24 schema:pagination 324-327
25 schema:productId N089a684cdcf74edface291c6bc60c4ea
26 N0d272d1d2bb0456a83121111decb21ca
27 N8c5e49d915ea4b2ca11c4c8ab2140791
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043191770
29 https://doi.org/10.1038/350324a0
30 schema:sdDatePublished 2019-04-10T18:57
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N2c8b658eb5174814879dbcd31f943231
33 schema:url http://www.nature.com/articles/350324a0
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N089a684cdcf74edface291c6bc60c4ea schema:name doi
38 schema:value 10.1038/350324a0
39 rdf:type schema:PropertyValue
40 N0d272d1d2bb0456a83121111decb21ca schema:name dimensions_id
41 schema:value pub.1043191770
42 rdf:type schema:PropertyValue
43 N2c8b658eb5174814879dbcd31f943231 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N5a949f243d91483e8a29c2895501dac6 rdf:first sg:person.0637243716.97
46 rdf:rest rdf:nil
47 N78ec888c4c974242926794b0ff08f594 schema:issueNumber 6316
48 rdf:type schema:PublicationIssue
49 N812415124ee94b27bdb1f6053ce053b3 schema:volumeNumber 350
50 rdf:type schema:PublicationVolume
51 N8c5e49d915ea4b2ca11c4c8ab2140791 schema:name readcube_id
52 schema:value cdbc9fa3fae062c9474eb2222b4f19481c8747380372a51f910f991733300c01
53 rdf:type schema:PropertyValue
54 Ne1f8ef84ffb04b979e239278d6b1f049 rdf:first sg:person.0666625474.19
55 rdf:rest N5a949f243d91483e8a29c2895501dac6
56 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
57 schema:name Earth Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
60 schema:name Oceanography
61 rdf:type schema:DefinedTerm
62 sg:journal.1018957 schema:issn 0090-0028
63 1476-4687
64 schema:name Nature
65 rdf:type schema:Periodical
66 sg:person.0637243716.97 schema:familyName Vautard
67 schema:givenName R.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637243716.97
69 rdf:type schema:Person
70 sg:person.0666625474.19 schema:familyName Ghil
71 schema:givenName M.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666625474.19
73 rdf:type schema:Person
74 sg:pub.10.1007/bf00138938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032154737
75 https://doi.org/10.1007/bf00138938
76 rdf:type schema:CreativeWork
77 sg:pub.10.1038/310670a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020907399
78 https://doi.org/10.1038/310670a0
79 rdf:type schema:CreativeWork
80 sg:pub.10.1038/321827a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020091934
81 https://doi.org/10.1038/321827a0
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/322430a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032895113
84 https://doi.org/10.1038/322430a0
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/343709a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050941284
87 https://doi.org/10.1038/343709a0
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1029/jd092id11p13345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025791400
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/proc.1982.12433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061445068
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1175/1520-0469(1978)035<1771:mapost>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356495
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1175/1520-0469(1986)043<0419:etdowa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018323254
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1175/1520-0469(1991)048<0752:ioitga>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040570574
98 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...