Domain-specific recruitment of amide amino acids for protein synthesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

Debra L. Tumbula, Hubert D. Becker, Wei-zhong Chang, Dieter Söll

ABSTRACT

The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis. More... »

PAGES

106

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35024120

DOI

http://dx.doi.org/10.1038/35024120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019583558

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10993083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Archaea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cloning, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methanobacterium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogenous Group Transferases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Biosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Amino Acyl", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tumbula", 
        "givenName": "Debra L.", 
        "id": "sg:person.01206750217.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206750217.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becker", 
        "givenName": "Hubert D.", 
        "id": "sg:person.01316650407.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316650407.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Wei-zhong", 
        "id": "sg:person.01217773323.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217773323.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA", 
            "\u2021Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00f6ll", 
        "givenName": "Dieter", 
        "id": "sg:person.012067245622.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1005305330517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001720272", 
          "https://doi.org/10.1023/a:1005305330517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(99)01893-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006049700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.26.14383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011256738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(00)80041-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011864169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.61.1.229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012881155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.64.1.202-236.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015534590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.5.1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020555335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.22.12838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021163732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.15.7903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021478956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022555880", 
          "https://doi.org/10.1007/pl00006571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331187a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023534031", 
          "https://doi.org/10.1038/331187a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024605605", 
          "https://doi.org/10.1007/pl00006592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.16.8985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029088365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.14.6953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030960058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382589b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039319749", 
          "https://doi.org/10.1038/382589b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.271.25.14856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040072107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.22.12832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045469121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.22.11819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045628773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1327.1998.2560080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048845232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/o68-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050146452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5340.1119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5452.479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.166.1.135-142.1986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062714807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.179.17.5625-5627.1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062726224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074507383", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1992.tb05509.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076154135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079671511", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081936013", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083299348", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-09", 
    "datePublishedReg": "2000-09-01", 
    "description": "The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35024120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6800", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "name": "Domain-specific recruitment of amide amino acids for protein synthesis", 
    "pagination": "106", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d4eea84d0f4e57e460d85b345141ead9bddefa453264594968dbf22a15a5b58"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10993083"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35024120"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019583558"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35024120", 
      "https://app.dimensions.ai/details/publication/pub.1019583558"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35024120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35024120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35024120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35024120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35024120'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      68 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35024120 schema:about N43e7e694bf88413faaec4e2d8762f358
2 N46c29cacb4eb4135a26e2f83e2454035
3 N7cb2a22d7af741e7874761ff634315d1
4 N8601902c9f8a4c9a8cb676d606133c2d
5 N8b94f128f1f449ef8c68afd5c5012ce3
6 Nb2cb1032419148f09e41f6e7ade921ee
7 Nbec18651da7340fa96f616616f5c1a68
8 Nc9b401dc806441d6a44d01cb3f6d2845
9 Ncf64c637607941f6bb0b83d3ae0f5d03
10 Nf7b8731a580a4ab383eabf6dc0fc3e82
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author N50fa50a6178e48aeba63737be8728d0e
14 schema:citation sg:pub.10.1007/pl00006571
15 sg:pub.10.1007/pl00006592
16 sg:pub.10.1023/a:1005305330517
17 sg:pub.10.1038/331187a0
18 sg:pub.10.1038/382589b0
19 https://app.dimensions.ai/details/publication/pub.1074507383
20 https://app.dimensions.ai/details/publication/pub.1079671511
21 https://app.dimensions.ai/details/publication/pub.1081936013
22 https://app.dimensions.ai/details/publication/pub.1083299348
23 https://doi.org/10.1002/j.1460-2075.1992.tb05509.x
24 https://doi.org/10.1016/s0168-9525(99)01893-4
25 https://doi.org/10.1016/s0960-9822(00)80041-x
26 https://doi.org/10.1046/j.1432-1327.1998.2560080.x
27 https://doi.org/10.1073/pnas.61.1.229
28 https://doi.org/10.1073/pnas.72.5.1909
29 https://doi.org/10.1073/pnas.93.14.6953
30 https://doi.org/10.1073/pnas.94.15.7903
31 https://doi.org/10.1073/pnas.94.22.11819
32 https://doi.org/10.1073/pnas.94.26.14383
33 https://doi.org/10.1073/pnas.95.22.12832
34 https://doi.org/10.1073/pnas.95.22.12838
35 https://doi.org/10.1073/pnas.96.16.8985
36 https://doi.org/10.1074/jbc.271.25.14856
37 https://doi.org/10.1126/science.278.5340.1119
38 https://doi.org/10.1126/science.287.5452.479
39 https://doi.org/10.1128/jb.166.1.135-142.1986
40 https://doi.org/10.1128/jb.179.17.5625-5627.1997
41 https://doi.org/10.1128/mmbr.64.1.202-236.2000
42 https://doi.org/10.1139/o68-140
43 schema:datePublished 2000-09
44 schema:datePublishedReg 2000-09-01
45 schema:description The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N287aee76a8284842af387e7d3c15db67
50 N6a45488cbaa64ec1a83ee234f171c821
51 sg:journal.1018957
52 schema:name Domain-specific recruitment of amide amino acids for protein synthesis
53 schema:pagination 106
54 schema:productId N0f02fa75501948a384331e6d4e6fee20
55 N297677fe2ec54ebfbbc852ca4547273b
56 Na666738e6554479792561d5b3eb4ce64
57 Ncc7fdb8e923948299fb4b05158763359
58 Ne79ce86462c046c6befa7f553cc4c67a
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019583558
60 https://doi.org/10.1038/35024120
61 schema:sdDatePublished 2019-04-11T12:27
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N693f91bac79a485480da606b7c7cfc6c
64 schema:url https://www.nature.com/articles/35024120
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0f02fa75501948a384331e6d4e6fee20 schema:name doi
69 schema:value 10.1038/35024120
70 rdf:type schema:PropertyValue
71 N287aee76a8284842af387e7d3c15db67 schema:volumeNumber 407
72 rdf:type schema:PublicationVolume
73 N297677fe2ec54ebfbbc852ca4547273b schema:name readcube_id
74 schema:value 5d4eea84d0f4e57e460d85b345141ead9bddefa453264594968dbf22a15a5b58
75 rdf:type schema:PropertyValue
76 N43e7e694bf88413faaec4e2d8762f358 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Methanobacterium
78 rdf:type schema:DefinedTerm
79 N46c29cacb4eb4135a26e2f83e2454035 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Peptide Biosynthesis
81 rdf:type schema:DefinedTerm
82 N5092c957ddad4ab4a3d49eb9448f78bf rdf:first sg:person.012067245622.45
83 rdf:rest rdf:nil
84 N50fa50a6178e48aeba63737be8728d0e rdf:first sg:person.01206750217.30
85 rdf:rest Nc80b347c0047428c8511270933ff3347
86 N693f91bac79a485480da606b7c7cfc6c schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N6a45488cbaa64ec1a83ee234f171c821 schema:issueNumber 6800
89 rdf:type schema:PublicationIssue
90 N7cb2a22d7af741e7874761ff634315d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Nitrogenous Group Transferases
92 rdf:type schema:DefinedTerm
93 N8601902c9f8a4c9a8cb676d606133c2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name RNA, Transfer, Amino Acyl
95 rdf:type schema:DefinedTerm
96 N8b94f128f1f449ef8c68afd5c5012ce3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Archaea
98 rdf:type schema:DefinedTerm
99 N8ce0d13d9c3348d086d5f99dec9655a8 rdf:first sg:person.01217773323.16
100 rdf:rest N5092c957ddad4ab4a3d49eb9448f78bf
101 Na666738e6554479792561d5b3eb4ce64 schema:name pubmed_id
102 schema:value 10993083
103 rdf:type schema:PropertyValue
104 Nb2cb1032419148f09e41f6e7ade921ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Escherichia coli
106 rdf:type schema:DefinedTerm
107 Nbec18651da7340fa96f616616f5c1a68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Cloning, Molecular
109 rdf:type schema:DefinedTerm
110 Nc80b347c0047428c8511270933ff3347 rdf:first sg:person.01316650407.26
111 rdf:rest N8ce0d13d9c3348d086d5f99dec9655a8
112 Nc9b401dc806441d6a44d01cb3f6d2845 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Amides
114 rdf:type schema:DefinedTerm
115 Ncc7fdb8e923948299fb4b05158763359 schema:name dimensions_id
116 schema:value pub.1019583558
117 rdf:type schema:PropertyValue
118 Ncf64c637607941f6bb0b83d3ae0f5d03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Amino Acids
120 rdf:type schema:DefinedTerm
121 Ne79ce86462c046c6befa7f553cc4c67a schema:name nlm_unique_id
122 schema:value 0410462
123 rdf:type schema:PropertyValue
124 Nf7b8731a580a4ab383eabf6dc0fc3e82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Protein Structure, Tertiary
126 rdf:type schema:DefinedTerm
127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biological Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biochemistry and Cell Biology
132 rdf:type schema:DefinedTerm
133 sg:journal.1018957 schema:issn 0090-0028
134 1476-4687
135 schema:name Nature
136 rdf:type schema:Periodical
137 sg:person.012067245622.45 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
138 schema:familyName Söll
139 schema:givenName Dieter
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45
141 rdf:type schema:Person
142 sg:person.01206750217.30 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
143 schema:familyName Tumbula
144 schema:givenName Debra L.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206750217.30
146 rdf:type schema:Person
147 sg:person.01217773323.16 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
148 schema:familyName Chang
149 schema:givenName Wei-zhong
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217773323.16
151 rdf:type schema:Person
152 sg:person.01316650407.26 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
153 schema:familyName Becker
154 schema:givenName Hubert D.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316650407.26
156 rdf:type schema:Person
157 sg:pub.10.1007/pl00006571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022555880
158 https://doi.org/10.1007/pl00006571
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/pl00006592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024605605
161 https://doi.org/10.1007/pl00006592
162 rdf:type schema:CreativeWork
163 sg:pub.10.1023/a:1005305330517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001720272
164 https://doi.org/10.1023/a:1005305330517
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/331187a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534031
167 https://doi.org/10.1038/331187a0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/382589b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039319749
170 https://doi.org/10.1038/382589b0
171 rdf:type schema:CreativeWork
172 https://app.dimensions.ai/details/publication/pub.1074507383 schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1079671511 schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1081936013 schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1083299348 schema:CreativeWork
176 https://doi.org/10.1002/j.1460-2075.1992.tb05509.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1076154135
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0168-9525(99)01893-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006049700
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0960-9822(00)80041-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011864169
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1046/j.1432-1327.1998.2560080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048845232
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1073/pnas.61.1.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012881155
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.72.5.1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020555335
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.93.14.6953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030960058
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.94.15.7903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021478956
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.94.22.11819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045628773
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.94.26.14383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011256738
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.95.22.12832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469121
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.95.22.12838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021163732
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.96.16.8985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029088365
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1074/jbc.271.25.14856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040072107
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.278.5340.1119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558583
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.287.5452.479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568085
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1128/jb.166.1.135-142.1986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062714807
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1128/jb.179.17.5625-5627.1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062726224
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1128/mmbr.64.1.202-236.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015534590
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1139/o68-140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050146452
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
217 schema:name *Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
218 ‡Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...