Domain-specific recruitment of amide amino acids for protein synthesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

Debra L. Tumbula, Hubert D. Becker, Wei-zhong Chang, Dieter Söll

ABSTRACT

The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis. More... »

PAGES

106

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35024120

DOI

http://dx.doi.org/10.1038/35024120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019583558

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10993083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Archaea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cloning, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methanobacterium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogenous Group Transferases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Biosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Amino Acyl", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tumbula", 
        "givenName": "Debra L.", 
        "id": "sg:person.01206750217.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206750217.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becker", 
        "givenName": "Hubert D.", 
        "id": "sg:person.01316650407.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316650407.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Wei-zhong", 
        "id": "sg:person.01217773323.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217773323.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA", 
            "\u2021Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00f6ll", 
        "givenName": "Dieter", 
        "id": "sg:person.012067245622.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1005305330517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001720272", 
          "https://doi.org/10.1023/a:1005305330517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(99)01893-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006049700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.26.14383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011256738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(00)80041-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011864169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.61.1.229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012881155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.64.1.202-236.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015534590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.5.1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020555335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.22.12838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021163732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.15.7903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021478956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022555880", 
          "https://doi.org/10.1007/pl00006571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331187a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023534031", 
          "https://doi.org/10.1038/331187a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024605605", 
          "https://doi.org/10.1007/pl00006592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.16.8985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029088365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.14.6953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030960058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382589b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039319749", 
          "https://doi.org/10.1038/382589b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.271.25.14856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040072107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.22.12832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045469121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.22.11819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045628773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1327.1998.2560080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048845232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/o68-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050146452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5340.1119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5452.479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.166.1.135-142.1986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062714807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.179.17.5625-5627.1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062726224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074507383", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1992.tb05509.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076154135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079671511", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081936013", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083299348", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-09", 
    "datePublishedReg": "2000-09-01", 
    "description": "The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35024120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6800", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "name": "Domain-specific recruitment of amide amino acids for protein synthesis", 
    "pagination": "106", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d4eea84d0f4e57e460d85b345141ead9bddefa453264594968dbf22a15a5b58"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10993083"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35024120"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019583558"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35024120", 
      "https://app.dimensions.ai/details/publication/pub.1019583558"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35024120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35024120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35024120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35024120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35024120'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      68 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35024120 schema:about N103320cae04d4e9c950170a1f7643105
2 N36d348684bd54a2d922c1e6a76327ed3
3 N3c45a2b0537645a59d3e10da41cd0173
4 N4842cb1cda904673a57e71e76d2217c5
5 Na2a869486b5c4812bb375ab78b51c97a
6 Na5149cfda1634187b9ab323f7cf83dd2
7 Nd66f5c43de454fb491b6dcc17df30833
8 Nd758da9a13874c4b9762d418fa32fd89
9 Ne9ff139d6dba4d8c90d5c5f132e328dc
10 Nfb96917db559432e8e963362109600b3
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Na9578e6c89874ed9917398561bc5cecc
14 schema:citation sg:pub.10.1007/pl00006571
15 sg:pub.10.1007/pl00006592
16 sg:pub.10.1023/a:1005305330517
17 sg:pub.10.1038/331187a0
18 sg:pub.10.1038/382589b0
19 https://app.dimensions.ai/details/publication/pub.1074507383
20 https://app.dimensions.ai/details/publication/pub.1079671511
21 https://app.dimensions.ai/details/publication/pub.1081936013
22 https://app.dimensions.ai/details/publication/pub.1083299348
23 https://doi.org/10.1002/j.1460-2075.1992.tb05509.x
24 https://doi.org/10.1016/s0168-9525(99)01893-4
25 https://doi.org/10.1016/s0960-9822(00)80041-x
26 https://doi.org/10.1046/j.1432-1327.1998.2560080.x
27 https://doi.org/10.1073/pnas.61.1.229
28 https://doi.org/10.1073/pnas.72.5.1909
29 https://doi.org/10.1073/pnas.93.14.6953
30 https://doi.org/10.1073/pnas.94.15.7903
31 https://doi.org/10.1073/pnas.94.22.11819
32 https://doi.org/10.1073/pnas.94.26.14383
33 https://doi.org/10.1073/pnas.95.22.12832
34 https://doi.org/10.1073/pnas.95.22.12838
35 https://doi.org/10.1073/pnas.96.16.8985
36 https://doi.org/10.1074/jbc.271.25.14856
37 https://doi.org/10.1126/science.278.5340.1119
38 https://doi.org/10.1126/science.287.5452.479
39 https://doi.org/10.1128/jb.166.1.135-142.1986
40 https://doi.org/10.1128/jb.179.17.5625-5627.1997
41 https://doi.org/10.1128/mmbr.64.1.202-236.2000
42 https://doi.org/10.1139/o68-140
43 schema:datePublished 2000-09
44 schema:datePublishedReg 2000-09-01
45 schema:description The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N9be98b56f7a743d5a868c0cee1b222b5
50 Ndfa810c317c1473ea221153f0ab0128a
51 sg:journal.1018957
52 schema:name Domain-specific recruitment of amide amino acids for protein synthesis
53 schema:pagination 106
54 schema:productId N07380a3ff38a418fa32f36d6fcb1b462
55 N43b57d13138246d3a8378ebe71e267ac
56 N5488a32b6891479cacf9ecdf6326bd86
57 N99b20ef0d085464395f9f363a1da7f60
58 Nf78075638e29451ba6dee0ceb4980256
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019583558
60 https://doi.org/10.1038/35024120
61 schema:sdDatePublished 2019-04-11T12:27
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N33b604d1d09a44488d73842bed324791
64 schema:url https://www.nature.com/articles/35024120
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N07380a3ff38a418fa32f36d6fcb1b462 schema:name readcube_id
69 schema:value 5d4eea84d0f4e57e460d85b345141ead9bddefa453264594968dbf22a15a5b58
70 rdf:type schema:PropertyValue
71 N103320cae04d4e9c950170a1f7643105 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Archaea
73 rdf:type schema:DefinedTerm
74 N33b604d1d09a44488d73842bed324791 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N36d348684bd54a2d922c1e6a76327ed3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name RNA, Transfer, Amino Acyl
78 rdf:type schema:DefinedTerm
79 N3c45a2b0537645a59d3e10da41cd0173 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Methanobacterium
81 rdf:type schema:DefinedTerm
82 N43b57d13138246d3a8378ebe71e267ac schema:name doi
83 schema:value 10.1038/35024120
84 rdf:type schema:PropertyValue
85 N4842cb1cda904673a57e71e76d2217c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Nitrogenous Group Transferases
87 rdf:type schema:DefinedTerm
88 N5488a32b6891479cacf9ecdf6326bd86 schema:name dimensions_id
89 schema:value pub.1019583558
90 rdf:type schema:PropertyValue
91 N5f433df39a304de888d2e3b5e36f7e22 rdf:first sg:person.012067245622.45
92 rdf:rest rdf:nil
93 N80c7b6f0330b43c7b9cd2b563e8b374a rdf:first sg:person.01316650407.26
94 rdf:rest Nce9de0f9fb1c4305a3ddacd711797994
95 N99b20ef0d085464395f9f363a1da7f60 schema:name nlm_unique_id
96 schema:value 0410462
97 rdf:type schema:PropertyValue
98 N9be98b56f7a743d5a868c0cee1b222b5 schema:issueNumber 6800
99 rdf:type schema:PublicationIssue
100 Na2a869486b5c4812bb375ab78b51c97a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Protein Structure, Tertiary
102 rdf:type schema:DefinedTerm
103 Na5149cfda1634187b9ab323f7cf83dd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Amino Acids
105 rdf:type schema:DefinedTerm
106 Na9578e6c89874ed9917398561bc5cecc rdf:first sg:person.01206750217.30
107 rdf:rest N80c7b6f0330b43c7b9cd2b563e8b374a
108 Nce9de0f9fb1c4305a3ddacd711797994 rdf:first sg:person.01217773323.16
109 rdf:rest N5f433df39a304de888d2e3b5e36f7e22
110 Nd66f5c43de454fb491b6dcc17df30833 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Escherichia coli
112 rdf:type schema:DefinedTerm
113 Nd758da9a13874c4b9762d418fa32fd89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Amides
115 rdf:type schema:DefinedTerm
116 Ndfa810c317c1473ea221153f0ab0128a schema:volumeNumber 407
117 rdf:type schema:PublicationVolume
118 Ne9ff139d6dba4d8c90d5c5f132e328dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Cloning, Molecular
120 rdf:type schema:DefinedTerm
121 Nf78075638e29451ba6dee0ceb4980256 schema:name pubmed_id
122 schema:value 10993083
123 rdf:type schema:PropertyValue
124 Nfb96917db559432e8e963362109600b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Peptide Biosynthesis
126 rdf:type schema:DefinedTerm
127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biological Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biochemistry and Cell Biology
132 rdf:type schema:DefinedTerm
133 sg:journal.1018957 schema:issn 0090-0028
134 1476-4687
135 schema:name Nature
136 rdf:type schema:Periodical
137 sg:person.012067245622.45 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
138 schema:familyName Söll
139 schema:givenName Dieter
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45
141 rdf:type schema:Person
142 sg:person.01206750217.30 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
143 schema:familyName Tumbula
144 schema:givenName Debra L.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206750217.30
146 rdf:type schema:Person
147 sg:person.01217773323.16 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
148 schema:familyName Chang
149 schema:givenName Wei-zhong
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217773323.16
151 rdf:type schema:Person
152 sg:person.01316650407.26 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
153 schema:familyName Becker
154 schema:givenName Hubert D.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316650407.26
156 rdf:type schema:Person
157 sg:pub.10.1007/pl00006571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022555880
158 https://doi.org/10.1007/pl00006571
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/pl00006592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024605605
161 https://doi.org/10.1007/pl00006592
162 rdf:type schema:CreativeWork
163 sg:pub.10.1023/a:1005305330517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001720272
164 https://doi.org/10.1023/a:1005305330517
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/331187a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534031
167 https://doi.org/10.1038/331187a0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/382589b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039319749
170 https://doi.org/10.1038/382589b0
171 rdf:type schema:CreativeWork
172 https://app.dimensions.ai/details/publication/pub.1074507383 schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1079671511 schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1081936013 schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1083299348 schema:CreativeWork
176 https://doi.org/10.1002/j.1460-2075.1992.tb05509.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1076154135
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0168-9525(99)01893-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006049700
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0960-9822(00)80041-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011864169
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1046/j.1432-1327.1998.2560080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048845232
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1073/pnas.61.1.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012881155
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.72.5.1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020555335
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.93.14.6953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030960058
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.94.15.7903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021478956
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.94.22.11819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045628773
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.94.26.14383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011256738
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.95.22.12832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469121
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.95.22.12838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021163732
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.96.16.8985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029088365
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1074/jbc.271.25.14856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040072107
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.278.5340.1119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558583
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.287.5452.479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568085
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1128/jb.166.1.135-142.1986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062714807
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1128/jb.179.17.5625-5627.1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062726224
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1128/mmbr.64.1.202-236.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015534590
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1139/o68-140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050146452
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
217 schema:name *Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
218 ‡Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...