Domain-specific recruitment of amide amino acids for protein synthesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

Debra L. Tumbula, Hubert D. Becker, Wei-zhong Chang, Dieter Söll

ABSTRACT

The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis. More... »

PAGES

106

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35024120

DOI

http://dx.doi.org/10.1038/35024120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019583558

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10993083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Archaea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cloning, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methanobacterium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogenous Group Transferases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Biosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Amino Acyl", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tumbula", 
        "givenName": "Debra L.", 
        "id": "sg:person.01206750217.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206750217.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becker", 
        "givenName": "Hubert D.", 
        "id": "sg:person.01316650407.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316650407.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Wei-zhong", 
        "id": "sg:person.01217773323.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217773323.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "*Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA", 
            "\u2021Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00f6ll", 
        "givenName": "Dieter", 
        "id": "sg:person.012067245622.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1005305330517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001720272", 
          "https://doi.org/10.1023/a:1005305330517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(99)01893-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006049700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.26.14383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011256738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(00)80041-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011864169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.61.1.229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012881155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.64.1.202-236.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015534590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.5.1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020555335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.22.12838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021163732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.15.7903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021478956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022555880", 
          "https://doi.org/10.1007/pl00006571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331187a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023534031", 
          "https://doi.org/10.1038/331187a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024605605", 
          "https://doi.org/10.1007/pl00006592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.16.8985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029088365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.14.6953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030960058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382589b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039319749", 
          "https://doi.org/10.1038/382589b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.271.25.14856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040072107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.22.12832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045469121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.22.11819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045628773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1327.1998.2560080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048845232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/o68-140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050146452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5340.1119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5452.479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.166.1.135-142.1986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062714807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.179.17.5625-5627.1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062726224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074507383", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1992.tb05509.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076154135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079671511", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081936013", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083299348", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-09", 
    "datePublishedReg": "2000-09-01", 
    "description": "The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35024120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6800", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "name": "Domain-specific recruitment of amide amino acids for protein synthesis", 
    "pagination": "106", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d4eea84d0f4e57e460d85b345141ead9bddefa453264594968dbf22a15a5b58"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10993083"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35024120"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019583558"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35024120", 
      "https://app.dimensions.ai/details/publication/pub.1019583558"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35024120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35024120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35024120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35024120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35024120'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      68 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35024120 schema:about N1ad6b733b6e1453a8ed3fb239046df7f
2 N37377887413646f3a35661325645a2aa
3 N5939cef356794510b605cf22b653d4fe
4 N68ab1f18c9c24093a8ae2a6392ad5955
5 N77ccb2e4346d46b6860ddb4c1630f4ce
6 N897ad258943e4b119337118ff36a41a2
7 Na09162aa74b54fee905418eadce33850
8 Na4e1162de7c443a3a639211e25a1c37e
9 Nbea18de7c2614ae08a84ae971b566c43
10 Nf83f3eb5c7734ea49eecc16fea83e398
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author N461f8230b7414376a7ae21d4ec2ebb07
14 schema:citation sg:pub.10.1007/pl00006571
15 sg:pub.10.1007/pl00006592
16 sg:pub.10.1023/a:1005305330517
17 sg:pub.10.1038/331187a0
18 sg:pub.10.1038/382589b0
19 https://app.dimensions.ai/details/publication/pub.1074507383
20 https://app.dimensions.ai/details/publication/pub.1079671511
21 https://app.dimensions.ai/details/publication/pub.1081936013
22 https://app.dimensions.ai/details/publication/pub.1083299348
23 https://doi.org/10.1002/j.1460-2075.1992.tb05509.x
24 https://doi.org/10.1016/s0168-9525(99)01893-4
25 https://doi.org/10.1016/s0960-9822(00)80041-x
26 https://doi.org/10.1046/j.1432-1327.1998.2560080.x
27 https://doi.org/10.1073/pnas.61.1.229
28 https://doi.org/10.1073/pnas.72.5.1909
29 https://doi.org/10.1073/pnas.93.14.6953
30 https://doi.org/10.1073/pnas.94.15.7903
31 https://doi.org/10.1073/pnas.94.22.11819
32 https://doi.org/10.1073/pnas.94.26.14383
33 https://doi.org/10.1073/pnas.95.22.12832
34 https://doi.org/10.1073/pnas.95.22.12838
35 https://doi.org/10.1073/pnas.96.16.8985
36 https://doi.org/10.1074/jbc.271.25.14856
37 https://doi.org/10.1126/science.278.5340.1119
38 https://doi.org/10.1126/science.287.5452.479
39 https://doi.org/10.1128/jb.166.1.135-142.1986
40 https://doi.org/10.1128/jb.179.17.5625-5627.1997
41 https://doi.org/10.1128/mmbr.64.1.202-236.2000
42 https://doi.org/10.1139/o68-140
43 schema:datePublished 2000-09
44 schema:datePublishedReg 2000-09-01
45 schema:description The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N2f8c432944b24fd8af1f701aa85cddd6
50 Ne6058e45805a4bcab64cad0f27df2f5e
51 sg:journal.1018957
52 schema:name Domain-specific recruitment of amide amino acids for protein synthesis
53 schema:pagination 106
54 schema:productId N61628fd2496e419eb0f64a88cb5f807e
55 N96f464eec7ee40639e69468f036c5fa4
56 Na1b7dd94c65e4027b11f6d149ea1bd0b
57 Naf9df58fbd604bf08d7d9565b83afedc
58 Nbac28e95d3cd439081e4f53e207a82fe
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019583558
60 https://doi.org/10.1038/35024120
61 schema:sdDatePublished 2019-04-11T12:27
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N810da00d5e86479b9f800eeb603d4292
64 schema:url https://www.nature.com/articles/35024120
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N1ad6b733b6e1453a8ed3fb239046df7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name RNA, Transfer, Amino Acyl
70 rdf:type schema:DefinedTerm
71 N2f8c432944b24fd8af1f701aa85cddd6 schema:volumeNumber 407
72 rdf:type schema:PublicationVolume
73 N37377887413646f3a35661325645a2aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Nitrogenous Group Transferases
75 rdf:type schema:DefinedTerm
76 N461f8230b7414376a7ae21d4ec2ebb07 rdf:first sg:person.01206750217.30
77 rdf:rest N5ac88ec837dc4ee88df7bee33f4e74aa
78 N5939cef356794510b605cf22b653d4fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Escherichia coli
80 rdf:type schema:DefinedTerm
81 N5ac88ec837dc4ee88df7bee33f4e74aa rdf:first sg:person.01316650407.26
82 rdf:rest N5e48f8c89fdf4a69a571c095a0ffa9f2
83 N5e48f8c89fdf4a69a571c095a0ffa9f2 rdf:first sg:person.01217773323.16
84 rdf:rest Nee2496b2067843d4b9ab077196ef410d
85 N61628fd2496e419eb0f64a88cb5f807e schema:name nlm_unique_id
86 schema:value 0410462
87 rdf:type schema:PropertyValue
88 N68ab1f18c9c24093a8ae2a6392ad5955 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Cloning, Molecular
90 rdf:type schema:DefinedTerm
91 N77ccb2e4346d46b6860ddb4c1630f4ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Amides
93 rdf:type schema:DefinedTerm
94 N810da00d5e86479b9f800eeb603d4292 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N897ad258943e4b119337118ff36a41a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Protein Structure, Tertiary
98 rdf:type schema:DefinedTerm
99 N96f464eec7ee40639e69468f036c5fa4 schema:name readcube_id
100 schema:value 5d4eea84d0f4e57e460d85b345141ead9bddefa453264594968dbf22a15a5b58
101 rdf:type schema:PropertyValue
102 Na09162aa74b54fee905418eadce33850 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Archaea
104 rdf:type schema:DefinedTerm
105 Na1b7dd94c65e4027b11f6d149ea1bd0b schema:name doi
106 schema:value 10.1038/35024120
107 rdf:type schema:PropertyValue
108 Na4e1162de7c443a3a639211e25a1c37e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Amino Acids
110 rdf:type schema:DefinedTerm
111 Naf9df58fbd604bf08d7d9565b83afedc schema:name pubmed_id
112 schema:value 10993083
113 rdf:type schema:PropertyValue
114 Nbac28e95d3cd439081e4f53e207a82fe schema:name dimensions_id
115 schema:value pub.1019583558
116 rdf:type schema:PropertyValue
117 Nbea18de7c2614ae08a84ae971b566c43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Peptide Biosynthesis
119 rdf:type schema:DefinedTerm
120 Ne6058e45805a4bcab64cad0f27df2f5e schema:issueNumber 6800
121 rdf:type schema:PublicationIssue
122 Nee2496b2067843d4b9ab077196ef410d rdf:first sg:person.012067245622.45
123 rdf:rest rdf:nil
124 Nf83f3eb5c7734ea49eecc16fea83e398 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Methanobacterium
126 rdf:type schema:DefinedTerm
127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biological Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biochemistry and Cell Biology
132 rdf:type schema:DefinedTerm
133 sg:journal.1018957 schema:issn 0090-0028
134 1476-4687
135 schema:name Nature
136 rdf:type schema:Periodical
137 sg:person.012067245622.45 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
138 schema:familyName Söll
139 schema:givenName Dieter
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012067245622.45
141 rdf:type schema:Person
142 sg:person.01206750217.30 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
143 schema:familyName Tumbula
144 schema:givenName Debra L.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206750217.30
146 rdf:type schema:Person
147 sg:person.01217773323.16 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
148 schema:familyName Chang
149 schema:givenName Wei-zhong
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217773323.16
151 rdf:type schema:Person
152 sg:person.01316650407.26 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
153 schema:familyName Becker
154 schema:givenName Hubert D.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316650407.26
156 rdf:type schema:Person
157 sg:pub.10.1007/pl00006571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022555880
158 https://doi.org/10.1007/pl00006571
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/pl00006592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024605605
161 https://doi.org/10.1007/pl00006592
162 rdf:type schema:CreativeWork
163 sg:pub.10.1023/a:1005305330517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001720272
164 https://doi.org/10.1023/a:1005305330517
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/331187a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534031
167 https://doi.org/10.1038/331187a0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/382589b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039319749
170 https://doi.org/10.1038/382589b0
171 rdf:type schema:CreativeWork
172 https://app.dimensions.ai/details/publication/pub.1074507383 schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1079671511 schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1081936013 schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1083299348 schema:CreativeWork
176 https://doi.org/10.1002/j.1460-2075.1992.tb05509.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1076154135
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0168-9525(99)01893-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006049700
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0960-9822(00)80041-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011864169
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1046/j.1432-1327.1998.2560080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048845232
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1073/pnas.61.1.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012881155
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.72.5.1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020555335
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.93.14.6953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030960058
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.94.15.7903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021478956
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.94.22.11819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045628773
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.94.26.14383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011256738
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.95.22.12832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469121
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.95.22.12838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021163732
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.96.16.8985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029088365
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1074/jbc.271.25.14856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040072107
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.278.5340.1119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558583
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.287.5452.479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568085
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1128/jb.166.1.135-142.1986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062714807
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1128/jb.179.17.5625-5627.1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062726224
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1128/mmbr.64.1.202-236.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015534590
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1139/o68-140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050146452
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
217 schema:name *Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
218 ‡Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...