Signatures of granular microstructure in dense shear flows View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-07

AUTHORS

Daniel M. Mueth, Georges F. Debregeas, Greg S. Karczmar, Peter J. Eng, Sidney R. Nagel, Heinrich M. Jaeger

ABSTRACT

Granular materials and ordinary fluids react differently to shear stresses. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands1,2,3,4,5—narrow zones of large relative particle motion, with essentially rigid adjacent regions. Because shear bands mark areas of flow, material failure and energy dissipation, they are important in many industrial, civil engineering and geophysical processes6. They are also relevant to lubricating fluids confined to ultrathin molecular layers7. However, detailed three-dimensional information on motion within a shear band, including the degree of particle rotation and interparticle slip, is lacking. Similarly, very little is known about how the microstructure of individual grains affects movement in densely packed material5. Here we combine magnetic resonance imaging, X-ray tomography and high-speed-video particle tracking to obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile. More... »

PAGES

385-389

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35019032

DOI

http://dx.doi.org/10.1038/35019032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034802998

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10935630


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The James Franck Institute and Department of Physics", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The James Franck Institute and Department of Physics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueth", 
        "givenName": "Daniel M.", 
        "id": "sg:person.01333717005.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333717005.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The James Franck Institute and Department of Physics", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The James Franck Institute and Department of Physics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Debregeas", 
        "givenName": "Georges F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radiology Department", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Radiology Department"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karczmar", 
        "givenName": "Greg S.", 
        "id": "sg:person.012013275524.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012013275524.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Radiation Sources (CARS), University of Chicago, 5640 South Ellis Avenue, 60637, Chicago, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Center for Advanced Radiation Sources (CARS), University of Chicago, 5640 South Ellis Avenue, 60637, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eng", 
        "givenName": "Peter J.", 
        "id": "sg:person.0724303474.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724303474.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The James Franck Institute and Department of Physics", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The James Franck Institute and Department of Physics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagel", 
        "givenName": "Sidney R.", 
        "id": "sg:person.0727503755.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727503755.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The James Franck Institute and Department of Physics", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The James Franck Institute and Department of Physics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaeger", 
        "givenName": "Heinrich M.", 
        "id": "sg:person.01252327714.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252327714.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/381592a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005768051", 
          "https://doi.org/10.1038/381592a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-07", 
    "datePublishedReg": "2000-07-01", 
    "description": "Granular materials and ordinary fluids react differently to shear stresses. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands1,2,3,4,5\u2014narrow zones of large relative particle motion, with essentially rigid adjacent regions. Because shear bands mark areas of flow, material failure and energy dissipation, they are important in many industrial, civil engineering and geophysical processes6. They are also relevant to lubricating fluids confined to ultrathin molecular layers7. However, detailed three-dimensional information on motion within a shear band, including the degree of particle rotation and interparticle slip, is lacking. Similarly, very little is known about how the microstructure of individual grains affects movement in densely packed material5. Here we combine magnetic resonance imaging, X-ray tomography and high-speed-video particle tracking to obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/35019032", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6794", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "406"
      }
    ], 
    "keywords": [
      "shear bands", 
      "granular microstructure", 
      "shear flow", 
      "dense shear flow", 
      "relative particle motion", 
      "cohesionless powders", 
      "interparticle slip", 
      "material failure", 
      "particle rotation", 
      "particle velocity", 
      "granular materials", 
      "area of flow", 
      "civil engineering", 
      "velocity profiles", 
      "dry sand", 
      "video particle tracking", 
      "Couette geometry", 
      "shear stress", 
      "particle motion", 
      "energy dissipation", 
      "microstructure", 
      "ordinary fluids", 
      "ray tomography", 
      "particle tracking", 
      "packing density", 
      "individual grains", 
      "flow", 
      "materials", 
      "motion", 
      "three-dimensional information", 
      "powder", 
      "narrow zone", 
      "slip", 
      "fluid", 
      "dissipation", 
      "velocity", 
      "sand", 
      "engineering", 
      "tracking", 
      "grains", 
      "geometry", 
      "rotation", 
      "band", 
      "density", 
      "shape", 
      "stress", 
      "zone", 
      "key characteristics", 
      "characteristics", 
      "failure", 
      "profile", 
      "area", 
      "adjacent regions", 
      "region", 
      "degree", 
      "movement", 
      "imaging", 
      "information", 
      "signatures", 
      "tomography", 
      "magnetic resonance imaging", 
      "resonance imaging"
    ], 
    "name": "Signatures of granular microstructure in dense shear flows", 
    "pagination": "385-389", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034802998"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35019032"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10935630"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35019032", 
      "https://app.dimensions.ai/details/publication/pub.1034802998"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_308.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/35019032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35019032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35019032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35019032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35019032'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      91 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35019032 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 anzsrc-for:0915
4 schema:author N6cf48f698a8a424bae6e7e5152d779fa
5 schema:citation sg:pub.10.1038/381592a0
6 schema:datePublished 2000-07
7 schema:datePublishedReg 2000-07-01
8 schema:description Granular materials and ordinary fluids react differently to shear stresses. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands1,2,3,4,5—narrow zones of large relative particle motion, with essentially rigid adjacent regions. Because shear bands mark areas of flow, material failure and energy dissipation, they are important in many industrial, civil engineering and geophysical processes6. They are also relevant to lubricating fluids confined to ultrathin molecular layers7. However, detailed three-dimensional information on motion within a shear band, including the degree of particle rotation and interparticle slip, is lacking. Similarly, very little is known about how the microstructure of individual grains affects movement in densely packed material5. Here we combine magnetic resonance imaging, X-ray tomography and high-speed-video particle tracking to obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N06ce737cc12b4adeb5e9a21c8ed9eb6a
13 Nbade30d047ca45028f8e895edf30f529
14 sg:journal.1018957
15 schema:keywords Couette geometry
16 adjacent regions
17 area
18 area of flow
19 band
20 characteristics
21 civil engineering
22 cohesionless powders
23 degree
24 dense shear flow
25 density
26 dissipation
27 dry sand
28 energy dissipation
29 engineering
30 failure
31 flow
32 fluid
33 geometry
34 grains
35 granular materials
36 granular microstructure
37 imaging
38 individual grains
39 information
40 interparticle slip
41 key characteristics
42 magnetic resonance imaging
43 material failure
44 materials
45 microstructure
46 motion
47 movement
48 narrow zone
49 ordinary fluids
50 packing density
51 particle motion
52 particle rotation
53 particle tracking
54 particle velocity
55 powder
56 profile
57 ray tomography
58 region
59 relative particle motion
60 resonance imaging
61 rotation
62 sand
63 shape
64 shear bands
65 shear flow
66 shear stress
67 signatures
68 slip
69 stress
70 three-dimensional information
71 tomography
72 tracking
73 velocity
74 velocity profiles
75 video particle tracking
76 zone
77 schema:name Signatures of granular microstructure in dense shear flows
78 schema:pagination 385-389
79 schema:productId N04b8ba2267614a61a777037229987e04
80 N8200b5e8fb16416b98582f3f492160f0
81 Nf207890b3af94ec6be13895f157b5c76
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034802998
83 https://doi.org/10.1038/35019032
84 schema:sdDatePublished 2022-05-10T09:50
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nf4ebb00523db4e1aae25ad52cb7456bb
87 schema:url https://doi.org/10.1038/35019032
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N04b8ba2267614a61a777037229987e04 schema:name pubmed_id
92 schema:value 10935630
93 rdf:type schema:PropertyValue
94 N06ce737cc12b4adeb5e9a21c8ed9eb6a schema:issueNumber 6794
95 rdf:type schema:PublicationIssue
96 N1dbbcefeefc84868af8053acce29616d schema:affiliation grid-institutes:None
97 schema:familyName Debregeas
98 schema:givenName Georges F.
99 rdf:type schema:Person
100 N6cf48f698a8a424bae6e7e5152d779fa rdf:first sg:person.01333717005.74
101 rdf:rest N9907ffc208204567844d53151543a860
102 N74b6c07228fa4e2f8166284e250af4d5 rdf:first sg:person.01252327714.89
103 rdf:rest rdf:nil
104 N8200b5e8fb16416b98582f3f492160f0 schema:name doi
105 schema:value 10.1038/35019032
106 rdf:type schema:PropertyValue
107 N9907ffc208204567844d53151543a860 rdf:first N1dbbcefeefc84868af8053acce29616d
108 rdf:rest N9d476c790e9645018a8e7a17231be1bb
109 N9d476c790e9645018a8e7a17231be1bb rdf:first sg:person.012013275524.94
110 rdf:rest Nea6769b4831b4e16868c6df30d1e3d84
111 Na5a6d58401214022befcf99b1439ada4 rdf:first sg:person.0727503755.14
112 rdf:rest N74b6c07228fa4e2f8166284e250af4d5
113 Nbade30d047ca45028f8e895edf30f529 schema:volumeNumber 406
114 rdf:type schema:PublicationVolume
115 Nea6769b4831b4e16868c6df30d1e3d84 rdf:first sg:person.0724303474.93
116 rdf:rest Na5a6d58401214022befcf99b1439ada4
117 Nf207890b3af94ec6be13895f157b5c76 schema:name dimensions_id
118 schema:value pub.1034802998
119 rdf:type schema:PropertyValue
120 Nf4ebb00523db4e1aae25ad52cb7456bb schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
126 schema:name Resources Engineering and Extractive Metallurgy
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
129 schema:name Interdisciplinary Engineering
130 rdf:type schema:DefinedTerm
131 sg:journal.1018957 schema:issn 0028-0836
132 1476-4687
133 schema:name Nature
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.012013275524.94 schema:affiliation grid-institutes:None
137 schema:familyName Karczmar
138 schema:givenName Greg S.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012013275524.94
140 rdf:type schema:Person
141 sg:person.01252327714.89 schema:affiliation grid-institutes:None
142 schema:familyName Jaeger
143 schema:givenName Heinrich M.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252327714.89
145 rdf:type schema:Person
146 sg:person.01333717005.74 schema:affiliation grid-institutes:None
147 schema:familyName Mueth
148 schema:givenName Daniel M.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333717005.74
150 rdf:type schema:Person
151 sg:person.0724303474.93 schema:affiliation grid-institutes:grid.170205.1
152 schema:familyName Eng
153 schema:givenName Peter J.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724303474.93
155 rdf:type schema:Person
156 sg:person.0727503755.14 schema:affiliation grid-institutes:None
157 schema:familyName Nagel
158 schema:givenName Sidney R.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727503755.14
160 rdf:type schema:Person
161 sg:pub.10.1038/381592a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005768051
162 https://doi.org/10.1038/381592a0
163 rdf:type schema:CreativeWork
164 grid-institutes:None schema:alternateName Radiology Department
165 The James Franck Institute and Department of Physics
166 schema:name Radiology Department
167 The James Franck Institute and Department of Physics
168 rdf:type schema:Organization
169 grid-institutes:grid.170205.1 schema:alternateName Center for Advanced Radiation Sources (CARS), University of Chicago, 5640 South Ellis Avenue, 60637, Chicago, Illinois, USA
170 schema:name Center for Advanced Radiation Sources (CARS), University of Chicago, 5640 South Ellis Avenue, 60637, Chicago, Illinois, USA
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...