Generation and detection of phase-coherent current-driven magnons in magnetic multilayers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-07

AUTHORS

M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, V. Tsoi, P. Wyder

ABSTRACT

The magnetic state of a ferromagnet can affect the electrical transport properties of the material; for example, the relative orientation of the magnetic moments in magnetic multilayers underlies the phenomenon of giant magnetoresistance. The inverse effect--in which a large electrical current density can perturb the magnetic state of a multilayer--has been predicted and observed experimentally with point contacts and lithographically patterned samples. Some of these observations were taken as indirect evidence for current-induced excitation of spin waves, or 'magnons'. Here we probe directly the high-frequency behaviour and partial phase coherence of such current-induced excitations, by externally irradiating a point contact with microwaves. We determine the magnon spectrum and investigate how the magnon frequency and amplitude vary with the exciting current. Our observations support the feasibility of a spin-wave maser' or 'SWASER' (spin-wave amplification by stimulated emission of radiation). More... »

PAGES

46

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35017512

DOI

http://dx.doi.org/10.1038/35017512

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016807729

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10894534


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "*Grenoble High Magnetic Field Laboratory, Max-Planck-Institut f\u00fcr Festk\u00f6rperforschung and Centre National de la Recherche Scientifique, BP 166, F-38042 Grenoble Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsoi", 
        "givenName": "M.", 
        "id": "sg:person.0757753526.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757753526.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "*Grenoble High Magnetic Field Laboratory, Max-Planck-Institut f\u00fcr Festk\u00f6rperforschung and Centre National de la Recherche Scientifique, BP 166, F-38042 Grenoble Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jansen", 
        "givenName": "A. G. M.", 
        "id": "sg:person.012566147322.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012566147322.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "\u2020Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bass", 
        "givenName": "J.", 
        "id": "sg:person.0713145214.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713145214.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "\u2020Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiang", 
        "givenName": "W.-C.", 
        "id": "sg:person.011424372435.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424372435.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics", 
          "id": "https://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "\u2021Institute of Solid State Physics RAS, 142432 Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsoi", 
        "givenName": "V.", 
        "id": "sg:person.015304717463.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304717463.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "*Grenoble High Magnetic Field Laboratory, Max-Planck-Institut f\u00fcr Festk\u00f6rperforschung and Centre National de la Recherche Scientifique, BP 166, F-38042 Grenoble Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wyder", 
        "givenName": "P.", 
        "id": "sg:person.011670413327.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011670413327.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(99)00289-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007915887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(99)00043-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017292149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(61)90041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022872434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(61)90041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022872434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.r3213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032688731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.r3213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032688731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1148847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057677253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.364902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057991662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.364944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057991704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.91841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058131980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/13/33/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058958679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.81.869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060457494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.81.869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060457494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.1.168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.1.168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.728292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061117243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5429.867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566192"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-07", 
    "datePublishedReg": "2000-07-01", 
    "description": "The magnetic state of a ferromagnet can affect the electrical transport properties of the material; for example, the relative orientation of the magnetic moments in magnetic multilayers underlies the phenomenon of giant magnetoresistance. The inverse effect--in which a large electrical current density can perturb the magnetic state of a multilayer--has been predicted and observed experimentally with point contacts and lithographically patterned samples. Some of these observations were taken as indirect evidence for current-induced excitation of spin waves, or 'magnons'. Here we probe directly the high-frequency behaviour and partial phase coherence of such current-induced excitations, by externally irradiating a point contact with microwaves. We determine the magnon spectrum and investigate how the magnon frequency and amplitude vary with the exciting current. Our observations support the feasibility of a spin-wave maser' or 'SWASER' (spin-wave amplification by stimulated emission of radiation).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35017512", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6791", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "406"
      }
    ], 
    "name": "Generation and detection of phase-coherent current-driven magnons in\nmagnetic multilayers", 
    "pagination": "46", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50151efd4924f10f60c9e7660e3d3abd4858faa23f30d2ba18647a7bf80d719c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10894534"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35017512"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016807729"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35017512", 
      "https://app.dimensions.ai/details/publication/pub.1016807729"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53981_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35017512"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35017512'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35017512'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35017512'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35017512'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35017512 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N878a1c22456a4f1d85e1a60360b59482
4 schema:citation https://doi.org/10.1016/0022-3697(61)90041-5
5 https://doi.org/10.1016/0304-8853(96)00062-5
6 https://doi.org/10.1016/s0304-8853(99)00043-8
7 https://doi.org/10.1016/s0304-8853(99)00289-9
8 https://doi.org/10.1063/1.1148847
9 https://doi.org/10.1063/1.364902
10 https://doi.org/10.1063/1.364944
11 https://doi.org/10.1063/1.91841
12 https://doi.org/10.1088/0022-3719/13/33/009
13 https://doi.org/10.1103/physrev.81.869
14 https://doi.org/10.1103/physrevb.54.9353
15 https://doi.org/10.1103/physrevb.57.r3213
16 https://doi.org/10.1103/physrevlett.1.168
17 https://doi.org/10.1103/physrevlett.61.2472
18 https://doi.org/10.1103/physrevlett.80.4281
19 https://doi.org/10.1103/physrevlett.84.3149
20 https://doi.org/10.1109/20.728292
21 https://doi.org/10.1126/science.285.5429.867
22 schema:datePublished 2000-07
23 schema:datePublishedReg 2000-07-01
24 schema:description The magnetic state of a ferromagnet can affect the electrical transport properties of the material; for example, the relative orientation of the magnetic moments in magnetic multilayers underlies the phenomenon of giant magnetoresistance. The inverse effect--in which a large electrical current density can perturb the magnetic state of a multilayer--has been predicted and observed experimentally with point contacts and lithographically patterned samples. Some of these observations were taken as indirect evidence for current-induced excitation of spin waves, or 'magnons'. Here we probe directly the high-frequency behaviour and partial phase coherence of such current-induced excitations, by externally irradiating a point contact with microwaves. We determine the magnon spectrum and investigate how the magnon frequency and amplitude vary with the exciting current. Our observations support the feasibility of a spin-wave maser' or 'SWASER' (spin-wave amplification by stimulated emission of radiation).
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Nb04c51050b144740a470df28e44fc81c
29 Nb304caaa44c34b5ba52ec07ca433de42
30 sg:journal.1018957
31 schema:name Generation and detection of phase-coherent current-driven magnons in magnetic multilayers
32 schema:pagination 46
33 schema:productId N05e2c476a04d492298e9b0cefcadfdc4
34 N3fd7bfda86b7489f8859c1d27f1de88b
35 Na27ac641042948e095f7c24c6066cc32
36 Na46c91d946fc433a818e853527dc2fac
37 Ne108f8940a5d4ea3b4ad6ad3beefb5d8
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016807729
39 https://doi.org/10.1038/35017512
40 schema:sdDatePublished 2019-04-11T12:11
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N440047933f6a45d28404239dfac8760b
43 schema:url https://www.nature.com/articles/35017512
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N05e2c476a04d492298e9b0cefcadfdc4 schema:name readcube_id
48 schema:value 50151efd4924f10f60c9e7660e3d3abd4858faa23f30d2ba18647a7bf80d719c
49 rdf:type schema:PropertyValue
50 N141b0855ab2e410a9efba4cf31502b91 rdf:first sg:person.011424372435.50
51 rdf:rest N160492a6661c4cdaa804add9fae5de1b
52 N14e4bf5c41364042bde4e3f979985844 schema:name *Grenoble High Magnetic Field Laboratory, Max-Planck-Institut für Festkörperforschung and Centre National de la Recherche Scientifique, BP 166, F-38042 Grenoble Cedex 9, France
53 rdf:type schema:Organization
54 N160492a6661c4cdaa804add9fae5de1b rdf:first sg:person.015304717463.42
55 rdf:rest N838a6562093940238b83273591bbda65
56 N1c5f166eab35471f8759a0614936c1a8 schema:name *Grenoble High Magnetic Field Laboratory, Max-Planck-Institut für Festkörperforschung and Centre National de la Recherche Scientifique, BP 166, F-38042 Grenoble Cedex 9, France
57 rdf:type schema:Organization
58 N3fd7bfda86b7489f8859c1d27f1de88b schema:name doi
59 schema:value 10.1038/35017512
60 rdf:type schema:PropertyValue
61 N440047933f6a45d28404239dfac8760b schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N4b64302b340144b18a85ddca49ae1b0f rdf:first sg:person.0713145214.83
64 rdf:rest N141b0855ab2e410a9efba4cf31502b91
65 N6828b42dbc2148eca8e9978164365c88 schema:name *Grenoble High Magnetic Field Laboratory, Max-Planck-Institut für Festkörperforschung and Centre National de la Recherche Scientifique, BP 166, F-38042 Grenoble Cedex 9, France
66 rdf:type schema:Organization
67 N78147bfb1d5e4ce4893eda31ef2250c6 rdf:first sg:person.012566147322.45
68 rdf:rest N4b64302b340144b18a85ddca49ae1b0f
69 N838a6562093940238b83273591bbda65 rdf:first sg:person.011670413327.13
70 rdf:rest rdf:nil
71 N878a1c22456a4f1d85e1a60360b59482 rdf:first sg:person.0757753526.63
72 rdf:rest N78147bfb1d5e4ce4893eda31ef2250c6
73 Na27ac641042948e095f7c24c6066cc32 schema:name pubmed_id
74 schema:value 10894534
75 rdf:type schema:PropertyValue
76 Na46c91d946fc433a818e853527dc2fac schema:name nlm_unique_id
77 schema:value 0410462
78 rdf:type schema:PropertyValue
79 Nb04c51050b144740a470df28e44fc81c schema:issueNumber 6791
80 rdf:type schema:PublicationIssue
81 Nb304caaa44c34b5ba52ec07ca433de42 schema:volumeNumber 406
82 rdf:type schema:PublicationVolume
83 Ne108f8940a5d4ea3b4ad6ad3beefb5d8 schema:name dimensions_id
84 schema:value pub.1016807729
85 rdf:type schema:PropertyValue
86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
90 schema:name Other Physical Sciences
91 rdf:type schema:DefinedTerm
92 sg:journal.1018957 schema:issn 0090-0028
93 1476-4687
94 schema:name Nature
95 rdf:type schema:Periodical
96 sg:person.011424372435.50 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
97 schema:familyName Chiang
98 schema:givenName W.-C.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424372435.50
100 rdf:type schema:Person
101 sg:person.011670413327.13 schema:affiliation N14e4bf5c41364042bde4e3f979985844
102 schema:familyName Wyder
103 schema:givenName P.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011670413327.13
105 rdf:type schema:Person
106 sg:person.012566147322.45 schema:affiliation N6828b42dbc2148eca8e9978164365c88
107 schema:familyName Jansen
108 schema:givenName A. G. M.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012566147322.45
110 rdf:type schema:Person
111 sg:person.015304717463.42 schema:affiliation https://www.grid.ac/institutes/grid.418975.6
112 schema:familyName Tsoi
113 schema:givenName V.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304717463.42
115 rdf:type schema:Person
116 sg:person.0713145214.83 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
117 schema:familyName Bass
118 schema:givenName J.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713145214.83
120 rdf:type schema:Person
121 sg:person.0757753526.63 schema:affiliation N1c5f166eab35471f8759a0614936c1a8
122 schema:familyName Tsoi
123 schema:givenName M.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757753526.63
125 rdf:type schema:Person
126 https://doi.org/10.1016/0022-3697(61)90041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022872434
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0304-8853(99)00043-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017292149
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0304-8853(99)00289-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007915887
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1148847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057677253
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.364902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057991662
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.364944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057991704
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.91841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058131980
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1088/0022-3719/13/33/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058958679
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrev.81.869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060457494
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.57.r3213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032688731
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.1.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752188
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.61.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052840638
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.80.4281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817457
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.84.3149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331710
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/20.728292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061117243
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.285.5429.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566192
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
163 schema:name †Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116, USA
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.418975.6 schema:alternateName Institute of Solid State Physics
166 schema:name ‡Institute of Solid State Physics RAS, 142432 Chernogolovka, Moscow Region, Russia
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...