Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-03

AUTHORS

S A Strobel, P B Dervan

ABSTRACT

Physical mapping of chromosomes would be facilitated by methods of breaking large DNA into manageable fragments, or cutting uniquely at genetic markers of interest. Key issues in the design of sequence-specific DNA cleaving reagents are the specificity of binding, the generalizability of the recognition motif, and the cleavage yield. Oligonucleotide-directed triple helix formation is a generalizable motif for specific binding to sequences longer than 12 base pairs within DNA of high complexity. Studies with plasmid DNA show that triple helix formation can limit the operational specificity of restriction enzymes to endonuclease recognition sequences that overlap oligonucleotide-binding sites. Triple helix formation, followed by methylase protection, triple helix-disruption, and restriction endonuclease digestion produces near quantitative cleavage at the single overlapping triple helix-endonuclease site. As a demonstration that this technique may be applicable to the orchestrated cleavage of large genomic DNA, we report the near quantitative single-site enzymatic cleavage of the Saccharomyces cerevisiae genome mediated by triple helix formation. The 340-kilobase yeast chromosome III was cut uniquely at an overlapping homopurine-EcoRI target site 27 base pairs long to produce two expected cleavage products of 110 and 230 kilobases. No cleavage of any other chromosome was detected. The potential generalizability of this technique, which is capable of near quantitative cleavage at a single site in at least 14 megabase pairs of DNA, could enable selected regions of chromosomal DNA to be isolated without extensive screening of genomic libraries. More... »

PAGES

172-174

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/350172a0

DOI

http://dx.doi.org/10.1038/350172a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011429574

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/1848684


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Restriction Enzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis, Agar Gel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomic Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Substrate Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strobel", 
        "givenName": "S A", 
        "id": "sg:person.01220370716.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220370716.38"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Dervan", 
        "givenName": "P B", 
        "id": "sg:person.016377155552.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016377155552.62"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991-03", 
    "datePublishedReg": "1991-03-01", 
    "description": "Physical mapping of chromosomes would be facilitated by methods of breaking large DNA into manageable fragments, or cutting uniquely at genetic markers of interest. Key issues in the design of sequence-specific DNA cleaving reagents are the specificity of binding, the generalizability of the recognition motif, and the cleavage yield. Oligonucleotide-directed triple helix formation is a generalizable motif for specific binding to sequences longer than 12 base pairs within DNA of high complexity. Studies with plasmid DNA show that triple helix formation can limit the operational specificity of restriction enzymes to endonuclease recognition sequences that overlap oligonucleotide-binding sites. Triple helix formation, followed by methylase protection, triple helix-disruption, and restriction endonuclease digestion produces near quantitative cleavage at the single overlapping triple helix-endonuclease site. As a demonstration that this technique may be applicable to the orchestrated cleavage of large genomic DNA, we report the near quantitative single-site enzymatic cleavage of the Saccharomyces cerevisiae genome mediated by triple helix formation. The 340-kilobase yeast chromosome III was cut uniquely at an overlapping homopurine-EcoRI target site 27 base pairs long to produce two expected cleavage products of 110 and 230 kilobases. No cleavage of any other chromosome was detected. The potential generalizability of this technique, which is capable of near quantitative cleavage at a single site in at least 14 megabase pairs of DNA, could enable selected regions of chromosomal DNA to be isolated without extensive screening of genomic libraries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/350172a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6314", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "350"
      }
    ], 
    "name": "Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation", 
    "pagination": "172-174", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "367499f1621393069bc2057b1dc05049f9c105c2ff13e8540a336b67cbcc6c1e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "1848684"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/350172a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011429574"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/350172a0", 
      "https://app.dimensions.ai/details/publication/pub.1011429574"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nature/journal/v350/n6314/full/350172a0.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/350172a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/350172a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/350172a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/350172a0'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      20 PREDICATES      40 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/350172a0 schema:about N0975a6fd71094bc5b01e8b52c408365e
2 N394b3a6cd6df49c5819230cf611b4ca3
3 N6af39527a1ce40028f91dadfff7bc34e
4 N6c2fb74ecdec4874a10bb4a3f1775fd0
5 N742947b2e68a4a42ab78127f53ea6018
6 Na7574e338faf45da9ef062c23f996698
7 Nc1b4377b62f240108f6625c2e1a9a922
8 Nc5a71fe89b2d4e6ab9c0c943dff080a5
9 Nce549deaba9d49508bf7b9e81f957d31
10 Nd31bc602132c494e8b36e1e630aa96f9
11 Nda7727e21b55474284d18da6279423e4
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N5f9b7b76925640c19720ca4ff5538473
15 schema:datePublished 1991-03
16 schema:datePublishedReg 1991-03-01
17 schema:description Physical mapping of chromosomes would be facilitated by methods of breaking large DNA into manageable fragments, or cutting uniquely at genetic markers of interest. Key issues in the design of sequence-specific DNA cleaving reagents are the specificity of binding, the generalizability of the recognition motif, and the cleavage yield. Oligonucleotide-directed triple helix formation is a generalizable motif for specific binding to sequences longer than 12 base pairs within DNA of high complexity. Studies with plasmid DNA show that triple helix formation can limit the operational specificity of restriction enzymes to endonuclease recognition sequences that overlap oligonucleotide-binding sites. Triple helix formation, followed by methylase protection, triple helix-disruption, and restriction endonuclease digestion produces near quantitative cleavage at the single overlapping triple helix-endonuclease site. As a demonstration that this technique may be applicable to the orchestrated cleavage of large genomic DNA, we report the near quantitative single-site enzymatic cleavage of the Saccharomyces cerevisiae genome mediated by triple helix formation. The 340-kilobase yeast chromosome III was cut uniquely at an overlapping homopurine-EcoRI target site 27 base pairs long to produce two expected cleavage products of 110 and 230 kilobases. No cleavage of any other chromosome was detected. The potential generalizability of this technique, which is capable of near quantitative cleavage at a single site in at least 14 megabase pairs of DNA, could enable selected regions of chromosomal DNA to be isolated without extensive screening of genomic libraries.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nb4877ad9471a47bfa764924f93c49367
22 Nedea9497ce794a188b2543b39e0d14a2
23 sg:journal.1018957
24 schema:name Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation
25 schema:pagination 172-174
26 schema:productId N0fe645828ba4408ca15be7e671041ac6
27 N4cd416ea8ac344a9b177b23a7147cfe1
28 Na744b31a201549da840942c6d6e63c96
29 Nae4f87da5da84a3e96b778af4d94a482
30 Nf79f7d6a505843dca275649eae511a6b
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011429574
32 https://doi.org/10.1038/350172a0
33 schema:sdDatePublished 2019-04-10T22:19
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nd7b3497c2c784f88ad5ecf0f30df023f
36 schema:url http://www.nature.com/nature/journal/v350/n6314/full/350172a0.html
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0975a6fd71094bc5b01e8b52c408365e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
41 schema:name Electrophoresis, Agar Gel
42 rdf:type schema:DefinedTerm
43 N0fe645828ba4408ca15be7e671041ac6 schema:name doi
44 schema:value 10.1038/350172a0
45 rdf:type schema:PropertyValue
46 N26f22dd1f4524c97a10ff97c8e24677a rdf:first sg:person.016377155552.62
47 rdf:rest rdf:nil
48 N394b3a6cd6df49c5819230cf611b4ca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
49 schema:name Genomic Library
50 rdf:type schema:DefinedTerm
51 N4cd416ea8ac344a9b177b23a7147cfe1 schema:name dimensions_id
52 schema:value pub.1011429574
53 rdf:type schema:PropertyValue
54 N5f9b7b76925640c19720ca4ff5538473 rdf:first sg:person.01220370716.38
55 rdf:rest N26f22dd1f4524c97a10ff97c8e24677a
56 N6af39527a1ce40028f91dadfff7bc34e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Chromosomes, Fungal
58 rdf:type schema:DefinedTerm
59 N6c2fb74ecdec4874a10bb4a3f1775fd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name DNA, Fungal
61 rdf:type schema:DefinedTerm
62 N742947b2e68a4a42ab78127f53ea6018 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Molecular Sequence Data
64 rdf:type schema:DefinedTerm
65 Na744b31a201549da840942c6d6e63c96 schema:name readcube_id
66 schema:value 367499f1621393069bc2057b1dc05049f9c105c2ff13e8540a336b67cbcc6c1e
67 rdf:type schema:PropertyValue
68 Na7574e338faf45da9ef062c23f996698 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name DNA Restriction Enzymes
70 rdf:type schema:DefinedTerm
71 Nae4f87da5da84a3e96b778af4d94a482 schema:name nlm_unique_id
72 schema:value 0410462
73 rdf:type schema:PropertyValue
74 Nb4877ad9471a47bfa764924f93c49367 schema:issueNumber 6314
75 rdf:type schema:PublicationIssue
76 Nc1b4377b62f240108f6625c2e1a9a922 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Base Sequence
78 rdf:type schema:DefinedTerm
79 Nc5a71fe89b2d4e6ab9c0c943dff080a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Substrate Specificity
81 rdf:type schema:DefinedTerm
82 Nce549deaba9d49508bf7b9e81f957d31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Saccharomyces cerevisiae
84 rdf:type schema:DefinedTerm
85 Nd31bc602132c494e8b36e1e630aa96f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Nucleic Acid Conformation
87 rdf:type schema:DefinedTerm
88 Nd7b3497c2c784f88ad5ecf0f30df023f schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nda7727e21b55474284d18da6279423e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Chromosome Mapping
92 rdf:type schema:DefinedTerm
93 Nedea9497ce794a188b2543b39e0d14a2 schema:volumeNumber 350
94 rdf:type schema:PublicationVolume
95 Nf79f7d6a505843dca275649eae511a6b schema:name pubmed_id
96 schema:value 1848684
97 rdf:type schema:PropertyValue
98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biological Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
102 schema:name Genetics
103 rdf:type schema:DefinedTerm
104 sg:journal.1018957 schema:issn 0090-0028
105 1476-4687
106 schema:name Nature
107 rdf:type schema:Periodical
108 sg:person.01220370716.38 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
109 schema:familyName Strobel
110 schema:givenName S A
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220370716.38
112 rdf:type schema:Person
113 sg:person.016377155552.62 schema:familyName Dervan
114 schema:givenName P B
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016377155552.62
116 rdf:type schema:Person
117 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
118 schema:name Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...