Proteomics to study genes and genomes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-06

AUTHORS

Akhilesh Pandey, Matthias Mann

ABSTRACT

Proteomics, the large-scale analysis of proteins, will contribute greatly to our understanding of gene function in the post-genomic era. Proteomics can be divided into three main areas: (1) protein micro-characterization for large-scale identification of proteins and their post-translational modifications; (2) ‘differential display’ proteomics for comparison of protein levels with potential application in a wide range of diseases; and (3) studies of protein–protein interactions using techniques such as mass spectrometry or the yeast two-hybrid system. Because it is often difficult to predict the function of a protein based on homology to other proteins or even their three-dimensional structure, determination of components of a protein complex or of a cellular structure is central in functional analysis. This aspect of proteomic studies is perhaps the area of greatest promise. After the revolution in molecular biology exemplified by the ease of cloning by DNA methods, proteomics will add to our understanding of the biochemistry of proteins, processes and pathways for years to come. More... »

PAGES

837-846

References to SciGraph publications

  • 1999-12. The DNA sequence of human chromosome 22 in NATURE
  • 1998-02. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans in NATURE
  • 1999-07. Direct analysis of protein complexes using mass spectrometry in NATURE BIOTECHNOLOGY
  • 2000-02. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling in NATURE
  • 1989-07. A novel genetic system to detect protein–protein interactions in NATURE
  • 1999-11. Identification of in vivo substrates of the chaperonin GroEL in NATURE
  • 1996. Biological and Immunological Importance of BET v 1 Isoforms in NEW HORIZONS IN ALLERGY IMMUNOTHERAPY
  • 1996-02. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry in NATURE
  • 1993-08-01. Electrospray ionization mass spectrometry of phosphopeptides isolated by on-line immobilized metal-ion affinity chromatography in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 1998-09. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex in NATURE GENETICS
  • 1999-10. A generic protein purification method for protein complex characterization and proteome exploration in NATURE BIOTECHNOLOGY
  • 1998-04. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells in NATURE
  • 1996-01-01. From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Arnino Acid Analysis in BIO/TECHNOLOGY
  • 1999-12. Mapping signal transduction pathways by phage display in NATURE BIOTECHNOLOGY
  • 2000-02. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae in NATURE
  • 1997. Proteome Research: New Frontiers in Functional Genomics in NONE
  • 1999-10. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags in NATURE BIOTECHNOLOGY
  • 1994-11-01. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 1999-10. Structural genomics: beyond the Human Genome Project in NATURE GENETICS
  • Journal

    TITLE

    Nature

    ISSUE

    6788

    VOLUME

    405

    Related Patents

  • Generation Of Solid Support For Colorimetric Analysis; Obtain Liquid Capable Of Being Transformed Into Flexible Solid, Deposit On Surface Ofsolid Structure, Transform To Flexible Solid, Peel Off Solid Structure, Cure, Apply Film, Recover
  • Universal Peptide-Binding Scaffolds And Protein Chips
  • Optimizing Prognosis, Diagnosis And Treatment Using Phenotype And Genotype Analysis
  • System And Method For Using A Microfluidic Apparatus For Performing Two Dimensional Separations Of Biomolecular Materials; Dna Sequencing
  • Methods Of Identifying Xenohormetic Phenotypes And Agents
  • Microfluidic Apparatus For Performing Gel Protein Extractions And Methods For Using The Apparatus
  • Mesoporous Metal Oxide Materials For Phosphoproteomics
  • Human Monoclonal Antibodies To Human Nucleolin
  • Simultaneously Crushing Four Or More Catalysis Materials In Four Or More Spatially Discrete Crushing Zones Of A Parallel Crusher, Sieving Each Of The Four Or More Catalysis Materials; Sieving The First-Sieved Particles
  • Rapid Production Of Monoclonal Antibodies
  • Self-Referencing Biodetection Method And Patterned Bioassays
  • Colorimetric Resonant Optical Biosensors, For Detecting Biomolecular Interactions, Without The Use Of Labels And Can Be Done In A High-Throughput Manner
  • Method For Determining Skin Stress Or Skin Ageing In Vitro
  • Method And Apparatus For Biosensor Spectral Shift Detection
  • Optical Detection Of Label-Free Biomolecular Interactions Using Microreplicated Plastic
  • Methods For Detecting Post-Translationally Modified Lysines In A Polypeptide
  • Non-Invasive Method For Screening Of Active Agent/Formulation Against Skin Aging In Vivo, Comprises Contacting Human With Agent/Formulation, Applying Adhesive Tape To Skin And Tearing Off, Extracting The Biological Material And Detecting
  • Genetic Engineered Hybridomas
  • Anti-Nucleolin Agent-Conjugated Nanoparticles As Radio-Sensitizers And Mri And/Or X-Ray Contrast Agents
  • Method For The Diagnosis And Prognosis Of Malignant Diseases
  • High Resolution Label Free Analysis Of Cellular Properties
  • Microarrays And Uses Therefor
  • Computer Systems And Methods For Genomic Analysis
  • Immobilization Of Detector Using Pressure Sensitive Adhesive
  • Based On The Finding That Fifteen Proteins Surprisingly Were Either Down- Or Up-Regulated In Type 2-Diabetes; Eleven Of These Proteins (Markers For Type 2 Diabetes) Were Positively Identified By Mass Spectrometry
  • Nucleolin Antibodies
  • Method And Apparatus For Detecting Biomolecular Interactions
  • Lymphocytes; Immunoglobulins; Point Mutations
  • Detection Of Biochemical Interactions On A Biosensor Using Tunable Filters And Tunable Lasers
  • Use Of The Transcription Of The Slug Gene In Evaluating The Redisposition Of A Subject With Cancer To Develop Metastatis
  • Label-Free High-Throughput Optical Technique For Detecting Biomolecular Interactions
  • A Guided Mode Resonant Filter Biosensor Using A Linear Grating Surface Structure
  • Apparatus For Purification, Quantitative Analysis And Separation Of Molecules Such As Proteins In Gels, Detection Using Detectors Comprising Optics Having High And Low Refractive Index Material, Electroconductive Films, Metal Sheets And Immobilized Receptor
  • Methods For Identifying Modulators Of Ion Channels
  • Mapping Of Differential Display Of Proteins
  • Microarrays And Uses Therefor
  • Method For Identifying Cell-Specific Proteins
  • Correlation Of Gene And Protein Expression Patterns In Sample; Obtain Sample, Generate Both Gene And Protein Expression Profiles, Compare And Evauate, Associate Protein Analyzed With Specific Gene Expression Pattern
  • Method For Determining Skin Stress Or Skin Ageing In Vitro
  • Label-Free Methods For Performing Assays Using A Colorimetric Resonant Reflectance Optical Biosensor
  • Screening Nucleic Acid Sample And Detecting Nucleotide Sequences Polymorphisms; Obtain Mammalian Nucleic Acid Sequence, Determine Sequence, Compare To Control, Detect Adjustment, Expose Drug, Monitor And Evaluate Response
  • Method And Machine For Replicating Holographic Gratings On A Substrate
  • Anti-Nucleolin Agent-Conjugated Nanoparticles
  • Cosmetic Use Of An Active Agent Or Active Agent Mixture, Obtained From E.G. Clintonia Borealis Or Punica Granatum, For Preventing And/Or Inhibiting The Effect (I.E. Non-Pathological Effect) Of Psychoemotional Stress On The Hair
  • Controlling Translocation Through Nanopores With Fluid Walls
  • Apparatus For Use In The Detection Of Preferential Particles In Sample
  • Rapid Production Of Monoclonal Antibodies
  • Colorimetric Resonant Optical Biosensors, For Detecting Biomolecular Interactions, Without The Use Of Labels And Can Be Done In A High-Throughput Manner
  • Protein Fractionation
  • Optical Detection Of Label-Free Biomolecular Interactions Using Microreplicated Plastic Sensor Elements
  • Methods For Screening Cells And Antibodies
  • Label-Free High-Throughput Optical Technique For Detecting Biomolecular Interactions
  • Label-Free Methods For Performing Assays Using A Colorimetric Resonant Optical Biosensor
  • Utilizes Reporter Oligonucleotides As Biochemical Barcodes For Detecting Multiple Protein Structures Or Other Target Non-Nucleic Acid Analytes In One Solution
  • Geminiviral Vector For Expression Of Rituximab
  • Method And Instrument For Detecting Biomolecular Interactions
  • Methods For Screening Cells And Antibodies
  • Protein Chips For High Throughput Screening Of Protein Activity
  • Two-Dimensional Microfluidics For Protein Separations And Gene Analysis
  • Optical Apparatus Comprising Reflective Two-Dimensional Grid For Detecting Biomolecular Interactions; Biosensors; Medical Diagnostics
  • For Detecting The Binding Of One Or More Specific Binding Substances To Their Respective Binding Partners; Optical Device, Transmission Filters, Biosensors
  • Mass Spectroscopic Method For Comparing Protein Levels In Two Or More Samples
  • Diagnosing Chronic Stress In Organisms Comprises Providing Sample From Hair Follicles, Determining Expression Of A Marker For Chronic Stress, Optionally Determining E.G. Expression Of Further Marker For Stress, And Correlating The Results
  • Biosensor Electrophoresis
  • Method And Apparatus For Biosensor Spectral Shift Detection
  • Method For The Diagnosis And Prognosis Of Malignant Diseases
  • Kits For Detecting Antibodies With Sensitivity To Preferential Antigens; Generate Solid Support, Join Antibodies To Support, Incubate With Antigen, Detect Bound Antigen, Recover Bound Antigen
  • Anti-Nucleolin Agent-Conjugated Nanoparticles
  • Nanopore-Based Determination Of Protein Charge, Sharp, Volume, Rotational Diffusion Coefficient, And Dipole Moment
  • Methods Of Making And Using A Protein Array
  • Method Of Generating Molecule-Function Network
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35015709

    DOI

    http://dx.doi.org/10.1038/35015709

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030361158

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10866210


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Pathology, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.62560.37", 
              "name": [
                "Whitehead Institute for Biomedical Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts", 
                "Department of Pathology, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pandey", 
            "givenName": "Akhilesh", 
            "id": "sg:person.010146452600.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146452600.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.62560.37", 
              "name": [
                "Whitehead Institute for Biomedical Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts", 
                "Department of Pathology, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mann", 
            "givenName": "Matthias", 
            "id": "sg:person.01210517576.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210517576.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt0196-61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031542357", 
              "https://doi.org/10.1038/nbt0196-61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037826339", 
              "https://doi.org/10.1038/13783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/1044-0305(93)85031-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009477024", 
              "https://doi.org/10.1016/1044-0305(93)85031-r"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029022565", 
              "https://doi.org/10.1038/13690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/990031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048671863", 
              "https://doi.org/10.1038/990031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018713804", 
              "https://doi.org/10.1038/35888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/33423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005145915", 
              "https://doi.org/10.1038/33423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35001009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035773549", 
              "https://doi.org/10.1038/35001009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-5855-2_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045281875", 
              "https://doi.org/10.1007/978-1-4615-5855-2_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772847", 
              "https://doi.org/10.1038/10890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-03493-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017555537", 
              "https://doi.org/10.1007/978-3-662-03493-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018629105", 
              "https://doi.org/10.1016/1044-0305(94)80016-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/45977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002860173", 
              "https://doi.org/10.1038/45977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045828427", 
              "https://doi.org/10.1038/13732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35000501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010898206", 
              "https://doi.org/10.1038/35000501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/70736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042394759", 
              "https://doi.org/10.1038/70736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379466a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029969155", 
              "https://doi.org/10.1038/379466a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/340245a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028860985", 
              "https://doi.org/10.1038/340245a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050797047", 
              "https://doi.org/10.1038/1700"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-06", 
        "datePublishedReg": "2000-06-01", 
        "description": "Proteomics, the large-scale analysis of proteins, will contribute greatly to our understanding of gene function in the post-genomic era. Proteomics can be divided into three main areas: (1) protein micro-characterization for large-scale identification of proteins and their post-translational modifications; (2) \u2018differential display\u2019 proteomics for comparison of protein levels with potential application in a wide range of diseases; and (3) studies of protein\u2013protein interactions using techniques such as mass spectrometry or the yeast two-hybrid system. Because it is often difficult to predict the function of a protein based on homology to other proteins or even their three-dimensional structure, determination of components of a protein complex or of a cellular structure is central in functional analysis. This aspect of proteomic studies is perhaps the area of greatest promise. After the revolution in molecular biology exemplified by the ease of cloning by DNA methods, proteomics will add to our understanding of the biochemistry of proteins, processes and pathways for years to come.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/35015709", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6788", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "405"
          }
        ], 
        "keywords": [
          "two-hybrid system", 
          "protein-protein interactions", 
          "post-genomic era", 
          "post-translational modifications", 
          "biochemistry of proteins", 
          "large-scale identification", 
          "ease of cloning", 
          "gene function", 
          "protein complexes", 
          "three-dimensional structure", 
          "proteomic studies", 
          "large-scale analysis", 
          "differential display", 
          "functional analysis", 
          "proteomics", 
          "molecular biology", 
          "DNA methods", 
          "protein", 
          "protein levels", 
          "cellular structure", 
          "mass spectrometry", 
          "genome", 
          "cloning", 
          "homology", 
          "genes", 
          "biology", 
          "pathway", 
          "biochemistry", 
          "great promise", 
          "function", 
          "complexes", 
          "understanding", 
          "wide range", 
          "identification", 
          "interaction", 
          "modification", 
          "structure", 
          "spectrometry", 
          "analysis", 
          "levels", 
          "components", 
          "study", 
          "potential applications", 
          "disease", 
          "area", 
          "process", 
          "promise", 
          "display", 
          "main areas", 
          "aspects", 
          "range", 
          "comparison", 
          "determination", 
          "system", 
          "years", 
          "ease", 
          "era", 
          "applications", 
          "method", 
          "technique", 
          "revolution", 
          "determination of components"
        ], 
        "name": "Proteomics to study genes and genomes", 
        "pagination": "837-846", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030361158"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35015709"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10866210"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35015709", 
          "https://app.dimensions.ai/details/publication/pub.1030361158"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_324.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/35015709"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35015709'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35015709'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35015709'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35015709'


     

    This table displays all metadata directly associated to this object as RDF triples.

    235 TRIPLES      21 PREDICATES      114 URIs      86 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35015709 schema:about N2952ce52a595464e8b642d9585a051f1
    2 N2c5eb074650d45ef9d9b6ae78c07a6c8
    3 N3d975eb9c39e4096b5125f666955fc99
    4 N5042783fcec745449554d68d26a53190
    5 N5a73e28763d74fb5b460673d12e2b591
    6 Nc02b523b07ba4a23a56342c965f968fc
    7 anzsrc-for:06
    8 anzsrc-for:0601
    9 anzsrc-for:0604
    10 schema:author Nf00f73ab7bb1476baf903fe72b3010a4
    11 schema:citation sg:pub.10.1007/978-1-4615-5855-2_16
    12 sg:pub.10.1007/978-3-662-03493-4
    13 sg:pub.10.1016/1044-0305(93)85031-r
    14 sg:pub.10.1016/1044-0305(94)80016-2
    15 sg:pub.10.1038/10890
    16 sg:pub.10.1038/13690
    17 sg:pub.10.1038/13732
    18 sg:pub.10.1038/13783
    19 sg:pub.10.1038/1700
    20 sg:pub.10.1038/33423
    21 sg:pub.10.1038/340245a0
    22 sg:pub.10.1038/35000501
    23 sg:pub.10.1038/35001009
    24 sg:pub.10.1038/35888
    25 sg:pub.10.1038/379466a0
    26 sg:pub.10.1038/45977
    27 sg:pub.10.1038/70736
    28 sg:pub.10.1038/990031
    29 sg:pub.10.1038/nbt0196-61
    30 schema:datePublished 2000-06
    31 schema:datePublishedReg 2000-06-01
    32 schema:description Proteomics, the large-scale analysis of proteins, will contribute greatly to our understanding of gene function in the post-genomic era. Proteomics can be divided into three main areas: (1) protein micro-characterization for large-scale identification of proteins and their post-translational modifications; (2) ‘differential display’ proteomics for comparison of protein levels with potential application in a wide range of diseases; and (3) studies of protein–protein interactions using techniques such as mass spectrometry or the yeast two-hybrid system. Because it is often difficult to predict the function of a protein based on homology to other proteins or even their three-dimensional structure, determination of components of a protein complex or of a cellular structure is central in functional analysis. This aspect of proteomic studies is perhaps the area of greatest promise. After the revolution in molecular biology exemplified by the ease of cloning by DNA methods, proteomics will add to our understanding of the biochemistry of proteins, processes and pathways for years to come.
    33 schema:genre article
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N0892ad23f00a4fa5a2eece96d6f7175c
    36 Nfafdfb43b1904775992ca74e129040ea
    37 sg:journal.1018957
    38 schema:keywords DNA methods
    39 analysis
    40 applications
    41 area
    42 aspects
    43 biochemistry
    44 biochemistry of proteins
    45 biology
    46 cellular structure
    47 cloning
    48 comparison
    49 complexes
    50 components
    51 determination
    52 determination of components
    53 differential display
    54 disease
    55 display
    56 ease
    57 ease of cloning
    58 era
    59 function
    60 functional analysis
    61 gene function
    62 genes
    63 genome
    64 great promise
    65 homology
    66 identification
    67 interaction
    68 large-scale analysis
    69 large-scale identification
    70 levels
    71 main areas
    72 mass spectrometry
    73 method
    74 modification
    75 molecular biology
    76 pathway
    77 post-genomic era
    78 post-translational modifications
    79 potential applications
    80 process
    81 promise
    82 protein
    83 protein complexes
    84 protein levels
    85 protein-protein interactions
    86 proteomic studies
    87 proteomics
    88 range
    89 revolution
    90 spectrometry
    91 structure
    92 study
    93 system
    94 technique
    95 three-dimensional structure
    96 two-hybrid system
    97 understanding
    98 wide range
    99 years
    100 schema:name Proteomics to study genes and genomes
    101 schema:pagination 837-846
    102 schema:productId N3664017121f34ab8b5598fd4074f6d81
    103 Na086353fb6da4d3889529edad5b659fa
    104 Nf2b3a6c48de14c5bbe9bbe5989e4cedb
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030361158
    106 https://doi.org/10.1038/35015709
    107 schema:sdDatePublished 2022-10-01T06:31
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher Neba989d2069349e4bd742ca24b3931cd
    110 schema:url https://doi.org/10.1038/35015709
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N0892ad23f00a4fa5a2eece96d6f7175c schema:volumeNumber 405
    115 rdf:type schema:PublicationVolume
    116 N14c5632f138a435285378bf3c652ea74 rdf:first sg:person.01210517576.72
    117 rdf:rest rdf:nil
    118 N2952ce52a595464e8b642d9585a051f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Genome
    120 rdf:type schema:DefinedTerm
    121 N2c5eb074650d45ef9d9b6ae78c07a6c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Biotechnology
    123 rdf:type schema:DefinedTerm
    124 N3664017121f34ab8b5598fd4074f6d81 schema:name dimensions_id
    125 schema:value pub.1030361158
    126 rdf:type schema:PropertyValue
    127 N3d975eb9c39e4096b5125f666955fc99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Humans
    129 rdf:type schema:DefinedTerm
    130 N5042783fcec745449554d68d26a53190 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Proteome
    132 rdf:type schema:DefinedTerm
    133 N5a73e28763d74fb5b460673d12e2b591 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Animals
    135 rdf:type schema:DefinedTerm
    136 Na086353fb6da4d3889529edad5b659fa schema:name pubmed_id
    137 schema:value 10866210
    138 rdf:type schema:PropertyValue
    139 Nc02b523b07ba4a23a56342c965f968fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Genes
    141 rdf:type schema:DefinedTerm
    142 Neba989d2069349e4bd742ca24b3931cd schema:name Springer Nature - SN SciGraph project
    143 rdf:type schema:Organization
    144 Nf00f73ab7bb1476baf903fe72b3010a4 rdf:first sg:person.010146452600.57
    145 rdf:rest N14c5632f138a435285378bf3c652ea74
    146 Nf2b3a6c48de14c5bbe9bbe5989e4cedb schema:name doi
    147 schema:value 10.1038/35015709
    148 rdf:type schema:PropertyValue
    149 Nfafdfb43b1904775992ca74e129040ea schema:issueNumber 6788
    150 rdf:type schema:PublicationIssue
    151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Biological Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Biochemistry and Cell Biology
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Genetics
    159 rdf:type schema:DefinedTerm
    160 sg:journal.1018957 schema:issn 0028-0836
    161 1476-4687
    162 schema:name Nature
    163 schema:publisher Springer Nature
    164 rdf:type schema:Periodical
    165 sg:person.010146452600.57 schema:affiliation grid-institutes:grid.62560.37
    166 schema:familyName Pandey
    167 schema:givenName Akhilesh
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146452600.57
    169 rdf:type schema:Person
    170 sg:person.01210517576.72 schema:affiliation grid-institutes:grid.62560.37
    171 schema:familyName Mann
    172 schema:givenName Matthias
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210517576.72
    174 rdf:type schema:Person
    175 sg:pub.10.1007/978-1-4615-5855-2_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045281875
    176 https://doi.org/10.1007/978-1-4615-5855-2_16
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-662-03493-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017555537
    179 https://doi.org/10.1007/978-3-662-03493-4
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1016/1044-0305(93)85031-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1009477024
    182 https://doi.org/10.1016/1044-0305(93)85031-r
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1016/1044-0305(94)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629105
    185 https://doi.org/10.1016/1044-0305(94)80016-2
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/10890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772847
    188 https://doi.org/10.1038/10890
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/13690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
    191 https://doi.org/10.1038/13690
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/13732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045828427
    194 https://doi.org/10.1038/13732
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/13783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037826339
    197 https://doi.org/10.1038/13783
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/1700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050797047
    200 https://doi.org/10.1038/1700
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/33423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005145915
    203 https://doi.org/10.1038/33423
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/340245a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028860985
    206 https://doi.org/10.1038/340245a0
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/35000501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010898206
    209 https://doi.org/10.1038/35000501
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
    212 https://doi.org/10.1038/35001009
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/35888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018713804
    215 https://doi.org/10.1038/35888
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/379466a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029969155
    218 https://doi.org/10.1038/379466a0
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/45977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002860173
    221 https://doi.org/10.1038/45977
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/70736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042394759
    224 https://doi.org/10.1038/70736
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/990031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048671863
    227 https://doi.org/10.1038/990031
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nbt0196-61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031542357
    230 https://doi.org/10.1038/nbt0196-61
    231 rdf:type schema:CreativeWork
    232 grid-institutes:grid.62560.37 schema:alternateName Department of Pathology, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA
    233 schema:name Department of Pathology, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA
    234 Whitehead Institute for Biomedical Research, Nine Cambridge Center, 02142, Cambridge, Massachusetts
    235 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...