Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-06

AUTHORS

Birger Rasmussen

ABSTRACT

The record of Archaean microfossils is sparse. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes are ubiquitous in modern sea-floor hydrothermal settings, and apparently have the most ancient lineages. Here, I report the discovery of pyritic filaments, the probable fossil remains of thread-like microorganisms, in a 3,235-million-year-old deep-sea volcanogenic massive sulphide deposit from the Pilbara Craton of Australia. From their mode of occurrence, the micro-organisms were probably thermophilic chemotropic prokaryotes, which inhabited sub-sea-floor hydrothermal environments. They represent the first fossil evidence for microbial life in a Precambrian submarine thermal spring system, and extend the known range of submarine hydrothermal biota by more than 2,700 million years. Such environments may have hosted the first living systems on Earth, consistent with proposals for a thermophilic origin of life. More... »

PAGES

676

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35015063

DOI

http://dx.doi.org/10.1038/35015063

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035285275

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10864322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Archaea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Australia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fossils", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Origin of Life", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sulfides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Western Australia", 
          "id": "https://www.grid.ac/institutes/grid.1012.2", 
          "name": [
            "Department of Geology and Geophysics, University of Western Australia , Nedlands, Western Australia 6907, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rasmussen", 
        "givenName": "Birger", 
        "id": "sg:person.0670247573.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670247573.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0301-9268(83)90081-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003412193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9268(83)90081-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003412193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsjgs.152.4.0587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007491986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/372455a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012648891", 
          "https://doi.org/10.1038/372455a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0091-7613(1992)020<0511:miitfo>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024305317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0091-7613(2000)28<731:oooefh>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028152278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/320609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028204077", 
          "https://doi.org/10.1038/320609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/320609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028204077", 
          "https://doi.org/10.1038/320609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.71.6.2329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034434366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/314530a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035407946", 
          "https://doi.org/10.1038/314530a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsjgs.154.3.0377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038093072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511601064.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039727778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9268(88)90005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052927314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9268(88)90005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052927314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.11536547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.11539686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.229.4715.717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062530629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5377.670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/d42684ff-2b26-11d7-8648000102c1865d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064970064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gsecongeo.93.3.292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068933819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3514837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070358857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3515441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070359402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077158060", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511601064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108140763"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-06", 
    "datePublishedReg": "2000-06-01", 
    "description": "The record of Archaean microfossils is sparse. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes are ubiquitous in modern sea-floor hydrothermal settings, and apparently have the most ancient lineages. Here, I report the discovery of pyritic filaments, the probable fossil remains of thread-like microorganisms, in a 3,235-million-year-old deep-sea volcanogenic massive sulphide deposit from the Pilbara Craton of Australia. From their mode of occurrence, the micro-organisms were probably thermophilic chemotropic prokaryotes, which inhabited sub-sea-floor hydrothermal environments. They represent the first fossil evidence for microbial life in a Precambrian submarine thermal spring system, and extend the known range of submarine hydrothermal biota by more than 2,700 million years. Such environments may have hosted the first living systems on Earth, consistent with proposals for a thermophilic origin of life.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35015063", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6787", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "405"
      }
    ], 
    "name": "Filamentous microfossils in a 3,235-million-year-old volcanogenic massive\nsulphide deposit", 
    "pagination": "676", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a815457082bd3ef152e1a4fd02b5c6f39bcf36a4c3408fcac9fecdd6bc655ea5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10864322"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35015063"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035285275"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35015063", 
      "https://app.dimensions.ai/details/publication/pub.1035285275"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54017_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35015063"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35015063'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35015063'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35015063'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35015063'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      57 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35015063 schema:about N22ff95eae395449cbf94d43769be6971
2 N27b7feda209f413cacee9e44bcd8fcef
3 N60ef0a37df5c47c9a26d7760d0460840
4 N77cb90baf701418cb8b0bd5cd482b993
5 N9c53d85b734c4f5faf285930c1c8d184
6 Nc4af20d1eacb47d58dc016116f0fa8de
7 Ne7af22ca32204a01925d68b2577f42d2
8 anzsrc-for:04
9 anzsrc-for:0403
10 schema:author N82da4e4f13b942608dfce9fc5d7af415
11 schema:citation sg:pub.10.1038/314530a0
12 sg:pub.10.1038/320609a0
13 sg:pub.10.1038/372455a0
14 https://app.dimensions.ai/details/publication/pub.1077158060
15 https://doi.org/10.1016/0301-9268(83)90081-5
16 https://doi.org/10.1016/0301-9268(88)90005-8
17 https://doi.org/10.1017/cbo9780511601064
18 https://doi.org/10.1017/cbo9780511601064.002
19 https://doi.org/10.1073/pnas.71.6.2329
20 https://doi.org/10.1126/science.11536547
21 https://doi.org/10.1126/science.11539686
22 https://doi.org/10.1126/science.229.4715.717
23 https://doi.org/10.1126/science.281.5377.670
24 https://doi.org/10.1130/0091-7613(1992)020<0511:miitfo>2.3.co;2
25 https://doi.org/10.1130/0091-7613(2000)28<731:oooefh>2.0.co;2
26 https://doi.org/10.1144/gsjgs.152.4.0587
27 https://doi.org/10.1144/gsjgs.154.3.0377
28 https://doi.org/10.1306/d42684ff-2b26-11d7-8648000102c1865d
29 https://doi.org/10.2113/gsecongeo.93.3.292
30 https://doi.org/10.2307/3514837
31 https://doi.org/10.2307/3515441
32 schema:datePublished 2000-06
33 schema:datePublishedReg 2000-06-01
34 schema:description The record of Archaean microfossils is sparse. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes are ubiquitous in modern sea-floor hydrothermal settings, and apparently have the most ancient lineages. Here, I report the discovery of pyritic filaments, the probable fossil remains of thread-like microorganisms, in a 3,235-million-year-old deep-sea volcanogenic massive sulphide deposit from the Pilbara Craton of Australia. From their mode of occurrence, the micro-organisms were probably thermophilic chemotropic prokaryotes, which inhabited sub-sea-floor hydrothermal environments. They represent the first fossil evidence for microbial life in a Precambrian submarine thermal spring system, and extend the known range of submarine hydrothermal biota by more than 2,700 million years. Such environments may have hosted the first living systems on Earth, consistent with proposals for a thermophilic origin of life.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N6725b7d109fc430ba8c14e0b26079b3a
39 Nc434a1e804a745268cf4e231322b3a0c
40 sg:journal.1018957
41 schema:name Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit
42 schema:pagination 676
43 schema:productId N22c9c45ef26f4e299832177f8a693dea
44 N4b0cc16891b44e64bf4fc15a042c8f6b
45 N4d011151015f4f17b5052585d89f0fcf
46 N782e736cb4c44c2883d36c2064c74556
47 N847f30c5b68e404aad2522fb547ce101
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035285275
49 https://doi.org/10.1038/35015063
50 schema:sdDatePublished 2019-04-11T12:16
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N78bc427da7e1423bbb09dd543a2dc2e7
53 schema:url https://www.nature.com/articles/35015063
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N22c9c45ef26f4e299832177f8a693dea schema:name readcube_id
58 schema:value a815457082bd3ef152e1a4fd02b5c6f39bcf36a4c3408fcac9fecdd6bc655ea5
59 rdf:type schema:PropertyValue
60 N22ff95eae395449cbf94d43769be6971 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Australia
62 rdf:type schema:DefinedTerm
63 N27b7feda209f413cacee9e44bcd8fcef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Archaea
65 rdf:type schema:DefinedTerm
66 N4b0cc16891b44e64bf4fc15a042c8f6b schema:name pubmed_id
67 schema:value 10864322
68 rdf:type schema:PropertyValue
69 N4d011151015f4f17b5052585d89f0fcf schema:name doi
70 schema:value 10.1038/35015063
71 rdf:type schema:PropertyValue
72 N60ef0a37df5c47c9a26d7760d0460840 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Sulfides
74 rdf:type schema:DefinedTerm
75 N6725b7d109fc430ba8c14e0b26079b3a schema:issueNumber 6787
76 rdf:type schema:PublicationIssue
77 N77cb90baf701418cb8b0bd5cd482b993 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Water Microbiology
79 rdf:type schema:DefinedTerm
80 N782e736cb4c44c2883d36c2064c74556 schema:name dimensions_id
81 schema:value pub.1035285275
82 rdf:type schema:PropertyValue
83 N78bc427da7e1423bbb09dd543a2dc2e7 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N82da4e4f13b942608dfce9fc5d7af415 rdf:first sg:person.0670247573.03
86 rdf:rest rdf:nil
87 N847f30c5b68e404aad2522fb547ce101 schema:name nlm_unique_id
88 schema:value 0410462
89 rdf:type schema:PropertyValue
90 N9c53d85b734c4f5faf285930c1c8d184 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Fossils
92 rdf:type schema:DefinedTerm
93 Nc434a1e804a745268cf4e231322b3a0c schema:volumeNumber 405
94 rdf:type schema:PublicationVolume
95 Nc4af20d1eacb47d58dc016116f0fa8de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Origin of Life
97 rdf:type schema:DefinedTerm
98 Ne7af22ca32204a01925d68b2577f42d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Biological Evolution
100 rdf:type schema:DefinedTerm
101 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
102 schema:name Earth Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
105 schema:name Geology
106 rdf:type schema:DefinedTerm
107 sg:journal.1018957 schema:issn 0090-0028
108 1476-4687
109 schema:name Nature
110 rdf:type schema:Periodical
111 sg:person.0670247573.03 schema:affiliation https://www.grid.ac/institutes/grid.1012.2
112 schema:familyName Rasmussen
113 schema:givenName Birger
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670247573.03
115 rdf:type schema:Person
116 sg:pub.10.1038/314530a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035407946
117 https://doi.org/10.1038/314530a0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/320609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028204077
120 https://doi.org/10.1038/320609a0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/372455a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012648891
123 https://doi.org/10.1038/372455a0
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1077158060 schema:CreativeWork
126 https://doi.org/10.1016/0301-9268(83)90081-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003412193
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0301-9268(88)90005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052927314
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1017/cbo9780511601064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108140763
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/cbo9780511601064.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039727778
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1073/pnas.71.6.2329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034434366
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1126/science.11536547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457364
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1126/science.11539686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457431
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1126/science.229.4715.717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062530629
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1126/science.281.5377.670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561962
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1130/0091-7613(1992)020<0511:miitfo>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024305317
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1130/0091-7613(2000)28<731:oooefh>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028152278
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1144/gsjgs.152.4.0587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007491986
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1144/gsjgs.154.3.0377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038093072
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1306/d42684ff-2b26-11d7-8648000102c1865d schema:sameAs https://app.dimensions.ai/details/publication/pub.1064970064
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2113/gsecongeo.93.3.292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068933819
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2307/3514837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070358857
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2307/3515441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070359402
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.1012.2 schema:alternateName University of Western Australia
161 schema:name Department of Geology and Geophysics, University of Western Australia , Nedlands, Western Australia 6907, Australia
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...