Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-06

AUTHORS

Birger Rasmussen

ABSTRACT

The record of Archaean microfossils is sparse. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes are ubiquitous in modern sea-floor hydrothermal settings, and apparently have the most ancient lineages. Here, I report the discovery of pyritic filaments, the probable fossil remains of thread-like microorganisms, in a 3,235-million-year-old deep-sea volcanogenic massive sulphide deposit from the Pilbara Craton of Australia. From their mode of occurrence, the micro-organisms were probably thermophilic chemotropic prokaryotes, which inhabited sub-sea-floor hydrothermal environments. They represent the first fossil evidence for microbial life in a Precambrian submarine thermal spring system, and extend the known range of submarine hydrothermal biota by more than 2,700 million years. Such environments may have hosted the first living systems on Earth, consistent with proposals for a thermophilic origin of life. More... »

PAGES

676

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35015063

DOI

http://dx.doi.org/10.1038/35015063

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035285275

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10864322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Archaea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Australia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fossils", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Origin of Life", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sulfides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Western Australia", 
          "id": "https://www.grid.ac/institutes/grid.1012.2", 
          "name": [
            "Department of Geology and Geophysics, University of Western Australia , Nedlands, Western Australia 6907, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rasmussen", 
        "givenName": "Birger", 
        "id": "sg:person.0670247573.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670247573.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0301-9268(83)90081-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003412193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9268(83)90081-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003412193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsjgs.152.4.0587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007491986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/372455a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012648891", 
          "https://doi.org/10.1038/372455a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0091-7613(1992)020<0511:miitfo>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024305317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0091-7613(2000)28<731:oooefh>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028152278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/320609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028204077", 
          "https://doi.org/10.1038/320609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/320609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028204077", 
          "https://doi.org/10.1038/320609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.71.6.2329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034434366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/314530a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035407946", 
          "https://doi.org/10.1038/314530a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsjgs.154.3.0377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038093072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511601064.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039727778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9268(88)90005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052927314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9268(88)90005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052927314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.11536547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.11539686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.229.4715.717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062530629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5377.670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/d42684ff-2b26-11d7-8648000102c1865d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064970064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gsecongeo.93.3.292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068933819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3514837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070358857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3515441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070359402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077158060", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511601064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108140763"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-06", 
    "datePublishedReg": "2000-06-01", 
    "description": "The record of Archaean microfossils is sparse. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes are ubiquitous in modern sea-floor hydrothermal settings, and apparently have the most ancient lineages. Here, I report the discovery of pyritic filaments, the probable fossil remains of thread-like microorganisms, in a 3,235-million-year-old deep-sea volcanogenic massive sulphide deposit from the Pilbara Craton of Australia. From their mode of occurrence, the micro-organisms were probably thermophilic chemotropic prokaryotes, which inhabited sub-sea-floor hydrothermal environments. They represent the first fossil evidence for microbial life in a Precambrian submarine thermal spring system, and extend the known range of submarine hydrothermal biota by more than 2,700 million years. Such environments may have hosted the first living systems on Earth, consistent with proposals for a thermophilic origin of life.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/35015063", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6787", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "405"
      }
    ], 
    "name": "Filamentous microfossils in a 3,235-million-year-old volcanogenic massive\nsulphide deposit", 
    "pagination": "676", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a815457082bd3ef152e1a4fd02b5c6f39bcf36a4c3408fcac9fecdd6bc655ea5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10864322"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35015063"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035285275"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35015063", 
      "https://app.dimensions.ai/details/publication/pub.1035285275"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54017_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/35015063"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35015063'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35015063'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35015063'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35015063'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      57 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35015063 schema:about N0aefd7d4b33c453ca98f69866ff7e2a8
2 N2536c71a4bef4322a26f61e2222be2d5
3 N4f2bba566a42403b8acf6601f4edd658
4 N69f921e59391476fb0663450070692fb
5 N78949d18bb0141a98b48ad6f2d01b3a5
6 Ndc0c7708068c4fdda14b08640081ba3a
7 Ne803418f88ae4add8ad435a35147a57f
8 anzsrc-for:04
9 anzsrc-for:0403
10 schema:author Nb17aa3fb455d41f68e54e2ee3c4e4b70
11 schema:citation sg:pub.10.1038/314530a0
12 sg:pub.10.1038/320609a0
13 sg:pub.10.1038/372455a0
14 https://app.dimensions.ai/details/publication/pub.1077158060
15 https://doi.org/10.1016/0301-9268(83)90081-5
16 https://doi.org/10.1016/0301-9268(88)90005-8
17 https://doi.org/10.1017/cbo9780511601064
18 https://doi.org/10.1017/cbo9780511601064.002
19 https://doi.org/10.1073/pnas.71.6.2329
20 https://doi.org/10.1126/science.11536547
21 https://doi.org/10.1126/science.11539686
22 https://doi.org/10.1126/science.229.4715.717
23 https://doi.org/10.1126/science.281.5377.670
24 https://doi.org/10.1130/0091-7613(1992)020<0511:miitfo>2.3.co;2
25 https://doi.org/10.1130/0091-7613(2000)28<731:oooefh>2.0.co;2
26 https://doi.org/10.1144/gsjgs.152.4.0587
27 https://doi.org/10.1144/gsjgs.154.3.0377
28 https://doi.org/10.1306/d42684ff-2b26-11d7-8648000102c1865d
29 https://doi.org/10.2113/gsecongeo.93.3.292
30 https://doi.org/10.2307/3514837
31 https://doi.org/10.2307/3515441
32 schema:datePublished 2000-06
33 schema:datePublishedReg 2000-06-01
34 schema:description The record of Archaean microfossils is sparse. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes are ubiquitous in modern sea-floor hydrothermal settings, and apparently have the most ancient lineages. Here, I report the discovery of pyritic filaments, the probable fossil remains of thread-like microorganisms, in a 3,235-million-year-old deep-sea volcanogenic massive sulphide deposit from the Pilbara Craton of Australia. From their mode of occurrence, the micro-organisms were probably thermophilic chemotropic prokaryotes, which inhabited sub-sea-floor hydrothermal environments. They represent the first fossil evidence for microbial life in a Precambrian submarine thermal spring system, and extend the known range of submarine hydrothermal biota by more than 2,700 million years. Such environments may have hosted the first living systems on Earth, consistent with proposals for a thermophilic origin of life.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N9b835f38abb24968bbe2fa1e69ab68f2
39 Nc8a7ea6bd7404a78aa6014b107268255
40 sg:journal.1018957
41 schema:name Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit
42 schema:pagination 676
43 schema:productId N7af4af4f71d44ef99e176c405e29d2ae
44 N7dfed2334a444b6ea382c9cb85504a79
45 N99fef1d750c643f48c0967d1c9351f52
46 Nbe783027f73745e4aff1a711dec3b63e
47 Nde3fdbb03e864d17881cc1b56788a60f
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035285275
49 https://doi.org/10.1038/35015063
50 schema:sdDatePublished 2019-04-11T12:16
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N50ec9092324d4afe92374863dfb05bf2
53 schema:url https://www.nature.com/articles/35015063
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0aefd7d4b33c453ca98f69866ff7e2a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Archaea
59 rdf:type schema:DefinedTerm
60 N2536c71a4bef4322a26f61e2222be2d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Water Microbiology
62 rdf:type schema:DefinedTerm
63 N4f2bba566a42403b8acf6601f4edd658 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Australia
65 rdf:type schema:DefinedTerm
66 N50ec9092324d4afe92374863dfb05bf2 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N69f921e59391476fb0663450070692fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Origin of Life
70 rdf:type schema:DefinedTerm
71 N78949d18bb0141a98b48ad6f2d01b3a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Biological Evolution
73 rdf:type schema:DefinedTerm
74 N7af4af4f71d44ef99e176c405e29d2ae schema:name doi
75 schema:value 10.1038/35015063
76 rdf:type schema:PropertyValue
77 N7dfed2334a444b6ea382c9cb85504a79 schema:name pubmed_id
78 schema:value 10864322
79 rdf:type schema:PropertyValue
80 N99fef1d750c643f48c0967d1c9351f52 schema:name readcube_id
81 schema:value a815457082bd3ef152e1a4fd02b5c6f39bcf36a4c3408fcac9fecdd6bc655ea5
82 rdf:type schema:PropertyValue
83 N9b835f38abb24968bbe2fa1e69ab68f2 schema:issueNumber 6787
84 rdf:type schema:PublicationIssue
85 Nb17aa3fb455d41f68e54e2ee3c4e4b70 rdf:first sg:person.0670247573.03
86 rdf:rest rdf:nil
87 Nbe783027f73745e4aff1a711dec3b63e schema:name dimensions_id
88 schema:value pub.1035285275
89 rdf:type schema:PropertyValue
90 Nc8a7ea6bd7404a78aa6014b107268255 schema:volumeNumber 405
91 rdf:type schema:PublicationVolume
92 Ndc0c7708068c4fdda14b08640081ba3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Fossils
94 rdf:type schema:DefinedTerm
95 Nde3fdbb03e864d17881cc1b56788a60f schema:name nlm_unique_id
96 schema:value 0410462
97 rdf:type schema:PropertyValue
98 Ne803418f88ae4add8ad435a35147a57f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Sulfides
100 rdf:type schema:DefinedTerm
101 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
102 schema:name Earth Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
105 schema:name Geology
106 rdf:type schema:DefinedTerm
107 sg:journal.1018957 schema:issn 0090-0028
108 1476-4687
109 schema:name Nature
110 rdf:type schema:Periodical
111 sg:person.0670247573.03 schema:affiliation https://www.grid.ac/institutes/grid.1012.2
112 schema:familyName Rasmussen
113 schema:givenName Birger
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670247573.03
115 rdf:type schema:Person
116 sg:pub.10.1038/314530a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035407946
117 https://doi.org/10.1038/314530a0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/320609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028204077
120 https://doi.org/10.1038/320609a0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/372455a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012648891
123 https://doi.org/10.1038/372455a0
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1077158060 schema:CreativeWork
126 https://doi.org/10.1016/0301-9268(83)90081-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003412193
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0301-9268(88)90005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052927314
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1017/cbo9780511601064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108140763
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/cbo9780511601064.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039727778
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1073/pnas.71.6.2329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034434366
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1126/science.11536547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457364
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1126/science.11539686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457431
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1126/science.229.4715.717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062530629
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1126/science.281.5377.670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561962
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1130/0091-7613(1992)020<0511:miitfo>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024305317
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1130/0091-7613(2000)28<731:oooefh>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028152278
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1144/gsjgs.152.4.0587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007491986
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1144/gsjgs.154.3.0377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038093072
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1306/d42684ff-2b26-11d7-8648000102c1865d schema:sameAs https://app.dimensions.ai/details/publication/pub.1064970064
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2113/gsecongeo.93.3.292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068933819
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2307/3514837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070358857
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2307/3515441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070359402
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.1012.2 schema:alternateName University of Western Australia
161 schema:name Department of Geology and Geophysics, University of Western Australia , Nedlands, Western Australia 6907, Australia
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...