Experimental entanglement of four particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03

AUTHORS

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, C. Monroe

ABSTRACT

Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such ‘entangled’ states explicitly demonstrate the non-local character of quantum theory1, having potential applications in high-precision spectroscopy2, quantum communication, cryptography and computation3. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited4,5—and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique6 to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions. More... »

PAGES

256-259

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/35005011

DOI

http://dx.doi.org/10.1038/35005011

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019244542

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10749201


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sackett", 
        "givenName": "C. A.", 
        "id": "sg:person.010771176137.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771176137.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kielpinski", 
        "givenName": "D.", 
        "id": "sg:person.0657127067.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657127067.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atomic Physics Division, NIST, 20899, Gaithersburg, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
            "Atomic Physics Division, NIST, 20899, Gaithersburg, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "King", 
        "givenName": "B. E.", 
        "id": "sg:person.014647727001.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647727001.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "C.", 
        "id": "sg:person.0654266726.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654266726.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "V.", 
        "id": "sg:person.0730537044.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730537044.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Electro-Optics, 1855 S. 57th Ct., 80301, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
            "Research Electro-Optics, 1855 S. 57th Ct., 80301, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myatt", 
        "givenName": "C. J.", 
        "id": "sg:person.014715610630.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014715610630.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rowe", 
        "givenName": "M.", 
        "id": "sg:person.01220551667.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220551667.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Electro-Optics, 1855 S. 57th Ct., 80301, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
            "Research Electro-Optics, 1855 S. 57th Ct., 80301, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turchette", 
        "givenName": "Q. A.", 
        "id": "sg:person.014166343430.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166343430.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Itano", 
        "givenName": "W. M.", 
        "id": "sg:person.010354537704.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010354537704.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wineland", 
        "givenName": "D. J.", 
        "id": "sg:person.0774367536.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774367536.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monroe", 
        "givenName": "C.", 
        "id": "sg:person.01362577227.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362577227.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35000514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007470266", 
          "https://doi.org/10.1038/35000514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003400050373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033951244", 
          "https://doi.org/10.1007/s003400050373"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-03", 
    "datePublishedReg": "2000-03-01", 
    "description": "Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such \u2018entangled\u2019 states explicitly demonstrate the non-local character of quantum theory1, having potential applications in high-precision spectroscopy2, quantum communication, cryptography and computation3. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited4,5\u2014and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique6 to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/35005011", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6775", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "404"
      }
    ], 
    "keywords": [
      "single laser pulse", 
      "single-particle wavefunctions", 
      "number of ions", 
      "quantum communication", 
      "quantum applications", 
      "laser pulses", 
      "motional excitation", 
      "motional degrees", 
      "Experimental entanglement", 
      "quantum mechanics", 
      "particle wavefunctions", 
      "entangled states", 
      "nonclassical effects", 
      "non-local character", 
      "constituent particles", 
      "wavefunctions", 
      "entanglement", 
      "ions", 
      "more particles", 
      "particles", 
      "potential applications", 
      "excitation", 
      "pulses", 
      "state", 
      "theory1", 
      "mechanics", 
      "applications", 
      "freedom", 
      "cryptography", 
      "principles", 
      "character", 
      "method", 
      "effect", 
      "degree", 
      "number", 
      "communication", 
      "products", 
      "quantum theory1", 
      "high-precision spectroscopy2", 
      "spectroscopy2", 
      "computation3", 
      "entanglement technique6", 
      "technique6", 
      "collective motional degrees", 
      "actual motional excitation"
    ], 
    "name": "Experimental entanglement of four particles", 
    "pagination": "256-259", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019244542"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/35005011"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10749201"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/35005011", 
      "https://app.dimensions.ai/details/publication/pub.1019244542"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_321.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/35005011"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35005011'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35005011'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35005011'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35005011'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      22 PREDICATES      76 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/35005011 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0205
4 anzsrc-for:0206
5 schema:author N70f06aebaf6f425685e147fc383ed8ce
6 schema:citation sg:pub.10.1007/s003400050373
7 sg:pub.10.1038/35000514
8 schema:datePublished 2000-03
9 schema:datePublishedReg 2000-03-01
10 schema:description Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such ‘entangled’ states explicitly demonstrate the non-local character of quantum theory1, having potential applications in high-precision spectroscopy2, quantum communication, cryptography and computation3. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited4,5—and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique6 to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Na433dfd4cadc41b79ecccac727d539e8
15 Nf68fcaf7db5d4b80a210ac46a735b029
16 sg:journal.1018957
17 schema:keywords Experimental entanglement
18 actual motional excitation
19 applications
20 character
21 collective motional degrees
22 communication
23 computation3
24 constituent particles
25 cryptography
26 degree
27 effect
28 entangled states
29 entanglement
30 entanglement technique6
31 excitation
32 freedom
33 high-precision spectroscopy2
34 ions
35 laser pulses
36 mechanics
37 method
38 more particles
39 motional degrees
40 motional excitation
41 non-local character
42 nonclassical effects
43 number
44 number of ions
45 particle wavefunctions
46 particles
47 potential applications
48 principles
49 products
50 pulses
51 quantum applications
52 quantum communication
53 quantum mechanics
54 quantum theory1
55 single laser pulse
56 single-particle wavefunctions
57 spectroscopy2
58 state
59 technique6
60 theory1
61 wavefunctions
62 schema:name Experimental entanglement of four particles
63 schema:pagination 256-259
64 schema:productId N189bc0b4b13f4fe089380c788cca02c0
65 Naf4339ef3da541648acf22e1f3aa306e
66 Nc38c2f063ef34e50a7942a21ce9dca23
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019244542
68 https://doi.org/10.1038/35005011
69 schema:sdDatePublished 2022-01-01T18:10
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nf3c095bf2f674f1abaecac19a258b1c4
72 schema:url https://doi.org/10.1038/35005011
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N09438239ff344f97972ee4c30c317b26 rdf:first sg:person.014715610630.37
77 rdf:rest N14188124980545f5871aa7153deb1df3
78 N14188124980545f5871aa7153deb1df3 rdf:first sg:person.01220551667.76
79 rdf:rest N5f42e4f1e93e48949d69d737eddb9c2a
80 N189bc0b4b13f4fe089380c788cca02c0 schema:name dimensions_id
81 schema:value pub.1019244542
82 rdf:type schema:PropertyValue
83 N2f8b60f655df48fc91bfd36710847ba0 rdf:first sg:person.010354537704.65
84 rdf:rest N8796f2667649451ea3de703d96637696
85 N5f42e4f1e93e48949d69d737eddb9c2a rdf:first sg:person.014166343430.54
86 rdf:rest N2f8b60f655df48fc91bfd36710847ba0
87 N70f06aebaf6f425685e147fc383ed8ce rdf:first sg:person.010771176137.59
88 rdf:rest Nd5d91286e612416db4f2c00232a4ef06
89 N8796f2667649451ea3de703d96637696 rdf:first sg:person.0774367536.56
90 rdf:rest Nfcd90a256ce744a1b2b3b7de22ca1b84
91 N8e0da76d4bb34f6ba872217e2d923753 rdf:first sg:person.0654266726.85
92 rdf:rest Nd7282d960e3a4494a742f774563db678
93 Na433dfd4cadc41b79ecccac727d539e8 schema:volumeNumber 404
94 rdf:type schema:PublicationVolume
95 Naf4339ef3da541648acf22e1f3aa306e schema:name doi
96 schema:value 10.1038/35005011
97 rdf:type schema:PropertyValue
98 Nb7473a3138754c2db6dc1ff4f1734f1d rdf:first sg:person.014647727001.92
99 rdf:rest N8e0da76d4bb34f6ba872217e2d923753
100 Nc38c2f063ef34e50a7942a21ce9dca23 schema:name pubmed_id
101 schema:value 10749201
102 rdf:type schema:PropertyValue
103 Nd5d91286e612416db4f2c00232a4ef06 rdf:first sg:person.0657127067.19
104 rdf:rest Nb7473a3138754c2db6dc1ff4f1734f1d
105 Nd7282d960e3a4494a742f774563db678 rdf:first sg:person.0730537044.30
106 rdf:rest N09438239ff344f97972ee4c30c317b26
107 Nf3c095bf2f674f1abaecac19a258b1c4 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nf68fcaf7db5d4b80a210ac46a735b029 schema:issueNumber 6775
110 rdf:type schema:PublicationIssue
111 Nfcd90a256ce744a1b2b3b7de22ca1b84 rdf:first sg:person.01362577227.48
112 rdf:rest rdf:nil
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
117 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
120 schema:name Optical Physics
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
123 schema:name Quantum Physics
124 rdf:type schema:DefinedTerm
125 sg:journal.1018957 schema:issn 0028-0836
126 1476-4687
127 schema:name Nature
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.010354537704.65 schema:affiliation grid-institutes:grid.94225.38
131 schema:familyName Itano
132 schema:givenName W. M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010354537704.65
134 rdf:type schema:Person
135 sg:person.010771176137.59 schema:affiliation grid-institutes:grid.94225.38
136 schema:familyName Sackett
137 schema:givenName C. A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771176137.59
139 rdf:type schema:Person
140 sg:person.01220551667.76 schema:affiliation grid-institutes:grid.94225.38
141 schema:familyName Rowe
142 schema:givenName M.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220551667.76
144 rdf:type schema:Person
145 sg:person.01362577227.48 schema:affiliation grid-institutes:grid.94225.38
146 schema:familyName Monroe
147 schema:givenName C.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362577227.48
149 rdf:type schema:Person
150 sg:person.014166343430.54 schema:affiliation grid-institutes:None
151 schema:familyName Turchette
152 schema:givenName Q. A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166343430.54
154 rdf:type schema:Person
155 sg:person.014647727001.92 schema:affiliation grid-institutes:grid.94225.38
156 schema:familyName King
157 schema:givenName B. E.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647727001.92
159 rdf:type schema:Person
160 sg:person.014715610630.37 schema:affiliation grid-institutes:None
161 schema:familyName Myatt
162 schema:givenName C. J.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014715610630.37
164 rdf:type schema:Person
165 sg:person.0654266726.85 schema:affiliation grid-institutes:grid.94225.38
166 schema:familyName Langer
167 schema:givenName C.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654266726.85
169 rdf:type schema:Person
170 sg:person.0657127067.19 schema:affiliation grid-institutes:grid.94225.38
171 schema:familyName Kielpinski
172 schema:givenName D.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657127067.19
174 rdf:type schema:Person
175 sg:person.0730537044.30 schema:affiliation grid-institutes:grid.94225.38
176 schema:familyName Meyer
177 schema:givenName V.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730537044.30
179 rdf:type schema:Person
180 sg:person.0774367536.56 schema:affiliation grid-institutes:grid.94225.38
181 schema:familyName Wineland
182 schema:givenName D. J.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774367536.56
184 rdf:type schema:Person
185 sg:pub.10.1007/s003400050373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033951244
186 https://doi.org/10.1007/s003400050373
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/35000514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007470266
189 https://doi.org/10.1038/35000514
190 rdf:type schema:CreativeWork
191 grid-institutes:None schema:alternateName Research Electro-Optics, 1855 S. 57th Ct., 80301, Boulder, Colorado, USA
192 schema:name Research Electro-Optics, 1855 S. 57th Ct., 80301, Boulder, Colorado, USA
193 Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA
194 rdf:type schema:Organization
195 grid-institutes:grid.94225.38 schema:alternateName Atomic Physics Division, NIST, 20899, Gaithersburg, Maryland, USA
196 Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA
197 schema:name Atomic Physics Division, NIST, 20899, Gaithersburg, Maryland, USA
198 Time and Frequency Division, National Institute of Standards and Technology, 80303, Boulder, Colorado, USA
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...