Construction of a genetic toggle switch in Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-01

AUTHORS

Timothy S. Gardner, Charles R. Cantor, James J. Collins

ABSTRACT

It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy. More... »

PAGES

339

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6767

VOLUME

403

Related Patents

  • Method For Inhibiting Proliferation Of Cells
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Bacteria Engineered To Reduce Hyperphenylalaninemia
  • Genetic Control Of Mammalian Cells With Synthetic Rna Regulatory Systems
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Tunable Control Of Protein Degradation In Synthetic And Endogenous Bacterial Systems
  • Cell-Directed Synthesis Of Multifunctional Nanopatterns And Nanomaterials
  • Method For Suppressing Cell Growth
  • Assembly Of High Fidelity Polynucleotides
  • Multi-State Genetic Oscillator
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • In Vivo Gene Sensors
  • Nucleic Acid-Based Logic Circuits
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Signal Activated Rna Interference
  • Bacteria Engineered To Reduce Hyperphenylalaninemia
  • Aptamer Regulated Nucleic Acids And Uses Thereof
  • Integrated—Ligand-Responsive Micrornas
  • Assembly Of High Fidelity Polynucleotides
  • Novel Recombinases And Target Sequences
  • Modular Nucleic Acid-Based Circuits For Counters, Binary Operations, Memory, And Logic
  • Aptamer Regulated Nucleic Acids And Uses Thereof
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Microfluidic Devices And Methods For Gene Synthesis
  • Modular Aptamer-Regulated Ribozymes
  • Reprogrammable Multicellular Synthetic Circuits
  • Biological Circuit Chemotactic Converters
  • Bacteria Engineered To Reduce Hyperphenylalaninemia
  • Method And Apparatus For Sustaining Viability Of Biological Cells On A Substrate
  • Cell-Directed Synthesis Of Multifunctional Nanopatterns And Nanomaterials
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Biological Circuit Chemotactic Converters
  • Biological Analog-To-Digital And Digital-To-Analog Converters
  • Aptamer Regulated Nucleic Acids And Uses Thereof
  • Modular Nucleic Acid-Based Circuits For Counters, Binary Operations, Memory And Logic
  • Analog And Mixed-Signal Computation And Circuits In Living Cells
  • Method And Apparatus For Sustaining Viability Of Biological Cells On A Substrate
  • Biological Circuit Chemotactic Converters
  • Bistable Genetic Toggle Switch
  • Riboregulator Compositions And Methods Of Use
  • Bistable Genetic Toggle Switch Comprising A Pair Of Reciprocal Repressors And A Positive Feedback Loop Based On Dna-Binding Proteins
  • Bacteria Engineered To Treat Diseases That Benefit From Reduced Gut Inflammation And/Or Tightened Gut Mucosal Barrier
  • In Vivo Gene Sensors
  • Combinatorial Transcription Control For Programmed Genetic Response
  • Modular Polynucleotides For Ligand-Controlled Regulatory Systems
  • Iterative Nucleic Acid Assembly Using Activation Of Vector-Encoded Traits
  • Modular Aptamer-Regulated Ribozymes
  • Methods For Sorting Nucleic Acids And Multiplexed Preparative In Vitro Cloning
  • Molecular State Machines
  • Microfluidic Devices And Methods For Gene Synthesis
  • Higher-Order Cellular Information Processing Devices
  • Parallel Macromolecular Delivery And Biochemical/Electrochemical Interface To Cells Employing Nanostructures
  • General Composition Framework For Ligand-Controlled Rna Regulatory Systems
  • Tunable Control Of Protein Degradation In Synthetic And Endogenous Bacterial Systems
  • Adjustable Threshold Switch
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35002131

    DOI

    http://dx.doi.org/10.1038/35002131

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002786107

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10659857


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lac Repressors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Promoter Regions, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Repressor Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stochastic Processes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Viral Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Viral Regulatory and Accessory Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "*Department of Biomedical Engineering,", 
                "\u2020Center for BioDynamics and"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gardner", 
            "givenName": "Timothy S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "*Department of Biomedical Engineering,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cantor", 
            "givenName": "Charles R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "*Department of Biomedical Engineering,", 
                "\u2020Center for BioDynamics and"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Collins", 
            "givenName": "James J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0022-5193(05)80144-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001842048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(75)80056-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004063621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(71)86192-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004721769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(05)80350-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006266449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.281.5382.1519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007402934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.3.814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019128746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(85)90086-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020913154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(78)90127-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023846911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biophys.27.1.199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033182112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0065-2571(81)90019-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041142984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0065-2571(81)90019-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041142984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(95)00685-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041746269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.6.1203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043602121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(73)90208-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044522507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(74)80037-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046489642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(94)80516-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047933836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1050610527", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0823-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050610527", 
              "https://doi.org/10.1007/978-1-4612-0823-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0823-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050610527", 
              "https://doi.org/10.1007/978-1-4612-0823-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(77)90016-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053458862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2807512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057869484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.431518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058009550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.1961.026.01.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060403442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.283.5400.381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062563871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083300818", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-01", 
        "datePublishedReg": "2000-01-01", 
        "description": "It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/35002131", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6767", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "403"
          }
        ], 
        "name": "Construction of a genetic toggle switch in Escherichia coli", 
        "pagination": "339", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0d44338a62d19574bb1ea6808eec3479d9ed7a220f53445db54c7f2ba8712730"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10659857"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35002131"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002786107"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35002131", 
          "https://app.dimensions.ai/details/publication/pub.1002786107"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/35002131"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35002131'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35002131'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35002131'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35002131'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      67 URIs      36 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35002131 schema:about N005acaddbe674008a081f79bb0604cba
    2 N0bf018b384de475da1961f51dcc1c2ff
    3 N19c1d928f34348f0bc290c8b63caa016
    4 N2df49920dc9e482580e2c8b373651f6e
    5 N409bc6682cf54d4f969ae53bdd8494c2
    6 N4a0d20873dab4233a6447cd3b21928b0
    7 N4ccd4b744ad94ddc89bafac96f70cba0
    8 N51d6aedd24ae4342be3300c6a331da0b
    9 N521df1e0bb6e431495d830ea27d1c2f2
    10 N5a548600b2cc4feb9adcaa70f89dc768
    11 N5f50365476874269a4feede9d91185ce
    12 N5fff17e20ec74d6898d873a31328f7c5
    13 N6bb0c0e9a45244539484e4154aaeaa46
    14 Nb8cb9a9a6d914e3aafb04de266820aaa
    15 Nc59de711530f43c6bd7a880665a891e6
    16 anzsrc-for:06
    17 anzsrc-for:0604
    18 schema:author N3f6756f3dc9d4ef89fb51b6803a69ebf
    19 schema:citation sg:pub.10.1007/978-1-4612-0823-5
    20 https://app.dimensions.ai/details/publication/pub.1050610527
    21 https://app.dimensions.ai/details/publication/pub.1083300818
    22 https://doi.org/10.1016/0022-2836(85)90086-5
    23 https://doi.org/10.1016/0022-5193(73)90208-7
    24 https://doi.org/10.1016/0022-5193(78)90127-3
    25 https://doi.org/10.1016/0025-5564(77)90016-5
    26 https://doi.org/10.1016/0065-2571(81)90019-4
    27 https://doi.org/10.1016/0378-1119(95)00685-0
    28 https://doi.org/10.1016/s0006-3495(71)86192-1
    29 https://doi.org/10.1016/s0006-3495(94)80516-8
    30 https://doi.org/10.1016/s0022-5193(05)80144-4
    31 https://doi.org/10.1016/s0022-5193(05)80350-9
    32 https://doi.org/10.1016/s0022-5193(74)80037-8
    33 https://doi.org/10.1016/s0022-5193(75)80056-7
    34 https://doi.org/10.1063/1.2807512
    35 https://doi.org/10.1063/1.431518
    36 https://doi.org/10.1073/pnas.94.3.814
    37 https://doi.org/10.1093/nar/25.6.1203
    38 https://doi.org/10.1101/sqb.1961.026.01.048
    39 https://doi.org/10.1126/science.281.5382.1519
    40 https://doi.org/10.1126/science.283.5400.381
    41 https://doi.org/10.1146/annurev.biophys.27.1.199
    42 schema:datePublished 2000-01
    43 schema:datePublishedReg 2000-01-01
    44 schema:description It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf Nac71d540c4db41faa93594666be8fc1d
    49 Nd4c486d87632489e96f8e1b592508e00
    50 sg:journal.1018957
    51 schema:name Construction of a genetic toggle switch in Escherichia coli
    52 schema:pagination 339
    53 schema:productId N0f61063d4f9f4140a5918efb0408ddfa
    54 N2424824e82e946e7ab54cd93ac27538b
    55 N416b0ff21f8f4a03b968afacc3d3e8fb
    56 N8b7432a5464e45bdb9cee6bebc97e952
    57 Ndc8c9e4d40e943e4a808663074378a22
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002786107
    59 https://doi.org/10.1038/35002131
    60 schema:sdDatePublished 2019-04-11T12:27
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher Nce0008bcfaec47caaa2b9921f3e1aa41
    63 schema:url https://www.nature.com/articles/35002131
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N005acaddbe674008a081f79bb0604cba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Viral Regulatory and Accessory Proteins
    69 rdf:type schema:DefinedTerm
    70 N0bf018b384de475da1961f51dcc1c2ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Models, Genetic
    72 rdf:type schema:DefinedTerm
    73 N0f61063d4f9f4140a5918efb0408ddfa schema:name pubmed_id
    74 schema:value 10659857
    75 rdf:type schema:PropertyValue
    76 N125d913345b14ae09848869911f0b7e4 rdf:first Nd88daa4e69a84ddaa9ab647d3f502645
    77 rdf:rest Nb062a80615694cea812a2cf30a79d599
    78 N19c1d928f34348f0bc290c8b63caa016 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Escherichia coli Proteins
    80 rdf:type schema:DefinedTerm
    81 N2424824e82e946e7ab54cd93ac27538b schema:name doi
    82 schema:value 10.1038/35002131
    83 rdf:type schema:PropertyValue
    84 N2df49920dc9e482580e2c8b373651f6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Gene Expression Regulation, Bacterial
    86 rdf:type schema:DefinedTerm
    87 N3f6756f3dc9d4ef89fb51b6803a69ebf rdf:first N8364471a54ce4f1bb020ebf305669aa7
    88 rdf:rest N125d913345b14ae09848869911f0b7e4
    89 N409bc6682cf54d4f969ae53bdd8494c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Lac Repressors
    91 rdf:type schema:DefinedTerm
    92 N416b0ff21f8f4a03b968afacc3d3e8fb schema:name readcube_id
    93 schema:value 0d44338a62d19574bb1ea6808eec3479d9ed7a220f53445db54c7f2ba8712730
    94 rdf:type schema:PropertyValue
    95 N4a0d20873dab4233a6447cd3b21928b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Bacterial Proteins
    97 rdf:type schema:DefinedTerm
    98 N4ccd4b744ad94ddc89bafac96f70cba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Transcription, Genetic
    100 rdf:type schema:DefinedTerm
    101 N4e9f9602e7ff423d8978aed3a768f0e6 schema:name *Department of Biomedical Engineering,
    102 rdf:type schema:Organization
    103 N51d6aedd24ae4342be3300c6a331da0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Repressor Proteins
    105 rdf:type schema:DefinedTerm
    106 N521df1e0bb6e431495d830ea27d1c2f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Genes, Bacterial
    108 rdf:type schema:DefinedTerm
    109 N578afbad7529496ebe7fd7f26956c02f schema:name *Department of Biomedical Engineering,
    110 †Center for BioDynamics and
    111 rdf:type schema:Organization
    112 N5a548600b2cc4feb9adcaa70f89dc768 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Plasmids
    114 rdf:type schema:DefinedTerm
    115 N5f50365476874269a4feede9d91185ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Escherichia coli
    117 rdf:type schema:DefinedTerm
    118 N5fff17e20ec74d6898d873a31328f7c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Viral Proteins
    120 rdf:type schema:DefinedTerm
    121 N646ca72f0ac44a7f8b6aa05442bc4e83 schema:name *Department of Biomedical Engineering,
    122 †Center for BioDynamics and
    123 rdf:type schema:Organization
    124 N6bb0c0e9a45244539484e4154aaeaa46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Promoter Regions, Genetic
    126 rdf:type schema:DefinedTerm
    127 N8364471a54ce4f1bb020ebf305669aa7 schema:affiliation N646ca72f0ac44a7f8b6aa05442bc4e83
    128 schema:familyName Gardner
    129 schema:givenName Timothy S.
    130 rdf:type schema:Person
    131 N8b7432a5464e45bdb9cee6bebc97e952 schema:name dimensions_id
    132 schema:value pub.1002786107
    133 rdf:type schema:PropertyValue
    134 Nac71d540c4db41faa93594666be8fc1d schema:volumeNumber 403
    135 rdf:type schema:PublicationVolume
    136 Nb062a80615694cea812a2cf30a79d599 rdf:first Nd24ee8f2973945f99968eccc76f2ed27
    137 rdf:rest rdf:nil
    138 Nb8cb9a9a6d914e3aafb04de266820aaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Stochastic Processes
    140 rdf:type schema:DefinedTerm
    141 Nc59de711530f43c6bd7a880665a891e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name DNA-Binding Proteins
    143 rdf:type schema:DefinedTerm
    144 Nce0008bcfaec47caaa2b9921f3e1aa41 schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 Nd24ee8f2973945f99968eccc76f2ed27 schema:affiliation N578afbad7529496ebe7fd7f26956c02f
    147 schema:familyName Collins
    148 schema:givenName James J.
    149 rdf:type schema:Person
    150 Nd4c486d87632489e96f8e1b592508e00 schema:issueNumber 6767
    151 rdf:type schema:PublicationIssue
    152 Nd88daa4e69a84ddaa9ab647d3f502645 schema:affiliation N4e9f9602e7ff423d8978aed3a768f0e6
    153 schema:familyName Cantor
    154 schema:givenName Charles R.
    155 rdf:type schema:Person
    156 Ndc8c9e4d40e943e4a808663074378a22 schema:name nlm_unique_id
    157 schema:value 0410462
    158 rdf:type schema:PropertyValue
    159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Biological Sciences
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Genetics
    164 rdf:type schema:DefinedTerm
    165 sg:journal.1018957 schema:issn 0090-0028
    166 1476-4687
    167 schema:name Nature
    168 rdf:type schema:Periodical
    169 sg:pub.10.1007/978-1-4612-0823-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050610527
    170 https://doi.org/10.1007/978-1-4612-0823-5
    171 rdf:type schema:CreativeWork
    172 https://app.dimensions.ai/details/publication/pub.1050610527 schema:CreativeWork
    173 https://app.dimensions.ai/details/publication/pub.1083300818 schema:CreativeWork
    174 https://doi.org/10.1016/0022-2836(85)90086-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020913154
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/0022-5193(73)90208-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522507
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/0022-5193(78)90127-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023846911
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/0025-5564(77)90016-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053458862
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/0065-2571(81)90019-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041142984
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/0378-1119(95)00685-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041746269
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/s0006-3495(71)86192-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004721769
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/s0006-3495(94)80516-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047933836
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/s0022-5193(05)80144-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001842048
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/s0022-5193(05)80350-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006266449
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/s0022-5193(74)80037-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046489642
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/s0022-5193(75)80056-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004063621
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1063/1.2807512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057869484
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1063/1.431518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058009550
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1073/pnas.94.3.814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019128746
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1093/nar/25.6.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043602121
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1101/sqb.1961.026.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060403442
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1126/science.281.5382.1519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007402934
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1126/science.283.5400.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563871
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1146/annurev.biophys.27.1.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182112
    213 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...