Construction of a genetic toggle switch in Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-01

AUTHORS

Timothy S. Gardner, Charles R. Cantor, James J. Collins

ABSTRACT

It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy. More... »

PAGES

339

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6767

VOLUME

403

Related Patents

  • Method For Inhibiting Proliferation Of Cells
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Bacteria Engineered To Reduce Hyperphenylalaninemia
  • Genetic Control Of Mammalian Cells With Synthetic Rna Regulatory Systems
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Tunable Control Of Protein Degradation In Synthetic And Endogenous Bacterial Systems
  • Cell-Directed Synthesis Of Multifunctional Nanopatterns And Nanomaterials
  • Method For Suppressing Cell Growth
  • Assembly Of High Fidelity Polynucleotides
  • Multi-State Genetic Oscillator
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • In Vivo Gene Sensors
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Nucleic Acid-Based Logic Circuits
  • Signal Activated Rna Interference
  • Bacteria Engineered To Reduce Hyperphenylalaninemia
  • Integrated—Ligand-Responsive Micrornas
  • Aptamer Regulated Nucleic Acids And Uses Thereof
  • Assembly Of High Fidelity Polynucleotides
  • Novel Recombinases And Target Sequences
  • Modular Nucleic Acid-Based Circuits For Counters, Binary Operations, Memory, And Logic
  • Aptamer Regulated Nucleic Acids And Uses Thereof
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Microfluidic Devices And Methods For Gene Synthesis
  • Modular Aptamer-Regulated Ribozymes
  • Reprogrammable Multicellular Synthetic Circuits
  • Biological Circuit Chemotactic Converters
  • Bacteria Engineered To Reduce Hyperphenylalaninemia
  • Method And Apparatus For Sustaining Viability Of Biological Cells On A Substrate
  • Cell-Directed Synthesis Of Multifunctional Nanopatterns And Nanomaterials
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Biological Circuit Chemotactic Converters
  • Biological Analog-To-Digital And Digital-To-Analog Converters
  • Aptamer Regulated Nucleic Acids And Uses Thereof
  • Analog And Mixed-Signal Computation And Circuits In Living Cells
  • Method And Apparatus For Sustaining Viability Of Biological Cells On A Substrate
  • Modular Nucleic Acid-Based Circuits For Counters, Binary Operations, Memory And Logic
  • Biological Circuit Chemotactic Converters
  • Bistable Genetic Toggle Switch
  • In Vivo Gene Sensors
  • Riboregulator Compositions And Methods Of Use
  • Bistable Genetic Toggle Switch Comprising A Pair Of Reciprocal Repressors And A Positive Feedback Loop Based On Dna-Binding Proteins
  • Bacteria Engineered To Treat Diseases That Benefit From Reduced Gut Inflammation And/Or Tightened Gut Mucosal Barrier
  • Combinatorial Transcription Control For Programmed Genetic Response
  • Modular Polynucleotides For Ligand-Controlled Regulatory Systems
  • Iterative Nucleic Acid Assembly Using Activation Of Vector-Encoded Traits
  • Modular Aptamer-Regulated Ribozymes
  • Methods For Sorting Nucleic Acids And Multiplexed Preparative In Vitro Cloning
  • Molecular State Machines
  • Microfluidic Devices And Methods For Gene Synthesis
  • Higher-Order Cellular Information Processing Devices
  • Parallel Macromolecular Delivery And Biochemical/Electrochemical Interface To Cells Employing Nanostructures
  • General Composition Framework For Ligand-Controlled Rna Regulatory Systems
  • Tunable Control Of Protein Degradation In Synthetic And Endogenous Bacterial Systems
  • Adjustable Threshold Switch
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35002131

    DOI

    http://dx.doi.org/10.1038/35002131

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002786107

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10659857


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lac Repressors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Promoter Regions, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Repressor Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stochastic Processes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Viral Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Viral Regulatory and Accessory Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "*Department of Biomedical Engineering,", 
                "\u2020Center for BioDynamics and"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gardner", 
            "givenName": "Timothy S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "*Department of Biomedical Engineering,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cantor", 
            "givenName": "Charles R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "*Department of Biomedical Engineering,", 
                "\u2020Center for BioDynamics and"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Collins", 
            "givenName": "James J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0022-5193(05)80144-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001842048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(75)80056-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004063621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(71)86192-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004721769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(05)80350-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006266449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.281.5382.1519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007402934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.3.814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019128746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(85)90086-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020913154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(78)90127-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023846911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biophys.27.1.199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033182112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0065-2571(81)90019-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041142984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0065-2571(81)90019-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041142984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(95)00685-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041746269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.6.1203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043602121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(73)90208-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044522507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(74)80037-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046489642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(94)80516-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047933836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1050610527", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0823-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050610527", 
              "https://doi.org/10.1007/978-1-4612-0823-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0823-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050610527", 
              "https://doi.org/10.1007/978-1-4612-0823-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(77)90016-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053458862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2807512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057869484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.431518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058009550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.1961.026.01.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060403442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.283.5400.381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062563871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083300818", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-01", 
        "datePublishedReg": "2000-01-01", 
        "description": "It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/35002131", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6767", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "403"
          }
        ], 
        "name": "Construction of a genetic toggle switch in Escherichia coli", 
        "pagination": "339", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0d44338a62d19574bb1ea6808eec3479d9ed7a220f53445db54c7f2ba8712730"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10659857"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35002131"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002786107"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35002131", 
          "https://app.dimensions.ai/details/publication/pub.1002786107"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/35002131"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35002131'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35002131'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35002131'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35002131'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      67 URIs      36 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35002131 schema:about N05bef9f0e3624914b78b772bc973a634
    2 N1c08478185ac4ea6bfb20b179615f8ed
    3 N271f4680e24b41888935fbf2f577cec1
    4 N32c4277882324fe1818f2d0b91d4a59f
    5 N3b52203bd7df4f9192fd7dc5a88aaef6
    6 N40355738088a4374ad698151cf633800
    7 N403585ce44e841369e5cb394436b177f
    8 N67d67c1b022a486585773d7cba5672ef
    9 N8da1b5fdabd9475ab8a8ae91a9d76cf7
    10 Na9b0584a12aa4293ab332fa4bb9c196c
    11 Nc202d49b2bb14c9bbd9671dfa7f6011c
    12 Nc27d51d7cf3f44a2ad001b2af674b58b
    13 Nc65a1db598af47eaa4e7a6b45e7a2172
    14 Ndfc3f620139449d48b5facccdcc2141a
    15 Nfad729138c614176815f31ea94f59d57
    16 anzsrc-for:06
    17 anzsrc-for:0604
    18 schema:author N5f1c166dc4a34574bdbd9ac3fd9a8540
    19 schema:citation sg:pub.10.1007/978-1-4612-0823-5
    20 https://app.dimensions.ai/details/publication/pub.1050610527
    21 https://app.dimensions.ai/details/publication/pub.1083300818
    22 https://doi.org/10.1016/0022-2836(85)90086-5
    23 https://doi.org/10.1016/0022-5193(73)90208-7
    24 https://doi.org/10.1016/0022-5193(78)90127-3
    25 https://doi.org/10.1016/0025-5564(77)90016-5
    26 https://doi.org/10.1016/0065-2571(81)90019-4
    27 https://doi.org/10.1016/0378-1119(95)00685-0
    28 https://doi.org/10.1016/s0006-3495(71)86192-1
    29 https://doi.org/10.1016/s0006-3495(94)80516-8
    30 https://doi.org/10.1016/s0022-5193(05)80144-4
    31 https://doi.org/10.1016/s0022-5193(05)80350-9
    32 https://doi.org/10.1016/s0022-5193(74)80037-8
    33 https://doi.org/10.1016/s0022-5193(75)80056-7
    34 https://doi.org/10.1063/1.2807512
    35 https://doi.org/10.1063/1.431518
    36 https://doi.org/10.1073/pnas.94.3.814
    37 https://doi.org/10.1093/nar/25.6.1203
    38 https://doi.org/10.1101/sqb.1961.026.01.048
    39 https://doi.org/10.1126/science.281.5382.1519
    40 https://doi.org/10.1126/science.283.5400.381
    41 https://doi.org/10.1146/annurev.biophys.27.1.199
    42 schema:datePublished 2000-01
    43 schema:datePublishedReg 2000-01-01
    44 schema:description It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N283bc63400af46efa2f019c446bca6bf
    49 N736a23cca2a34de9bb56f5aa24f15c6d
    50 sg:journal.1018957
    51 schema:name Construction of a genetic toggle switch in Escherichia coli
    52 schema:pagination 339
    53 schema:productId N46f22af34aa14fe492f7a4c4c5df511e
    54 N9f1588ad446049d38ee2206f26462f88
    55 Nb54006b4380a4b408624b61d4bb4287b
    56 Nbf8d3575c40847388986e26a1e321e3b
    57 Nd96fdc64724e4fee9b933cdbb9f6bb3d
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002786107
    59 https://doi.org/10.1038/35002131
    60 schema:sdDatePublished 2019-04-11T12:27
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N0cc10b39331043a7b238c18a833f4805
    63 schema:url https://www.nature.com/articles/35002131
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N05bef9f0e3624914b78b772bc973a634 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Viral Regulatory and Accessory Proteins
    69 rdf:type schema:DefinedTerm
    70 N0cc10b39331043a7b238c18a833f4805 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 N1c08478185ac4ea6bfb20b179615f8ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Lac Repressors
    74 rdf:type schema:DefinedTerm
    75 N20d52d0c15b6492eb90238de20b7b044 schema:name *Department of Biomedical Engineering,
    76 †Center for BioDynamics and
    77 rdf:type schema:Organization
    78 N239e7de6f3b947b294dc68bdbf6cff65 schema:affiliation Nc1297d73a5814f10a493cb7adbae7a90
    79 schema:familyName Cantor
    80 schema:givenName Charles R.
    81 rdf:type schema:Person
    82 N271f4680e24b41888935fbf2f577cec1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Bacterial Proteins
    84 rdf:type schema:DefinedTerm
    85 N283bc63400af46efa2f019c446bca6bf schema:volumeNumber 403
    86 rdf:type schema:PublicationVolume
    87 N32c4277882324fe1818f2d0b91d4a59f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Stochastic Processes
    89 rdf:type schema:DefinedTerm
    90 N3b52203bd7df4f9192fd7dc5a88aaef6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Gene Expression Regulation, Bacterial
    92 rdf:type schema:DefinedTerm
    93 N40355738088a4374ad698151cf633800 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Escherichia coli Proteins
    95 rdf:type schema:DefinedTerm
    96 N403585ce44e841369e5cb394436b177f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Transcription, Genetic
    98 rdf:type schema:DefinedTerm
    99 N46f22af34aa14fe492f7a4c4c5df511e schema:name doi
    100 schema:value 10.1038/35002131
    101 rdf:type schema:PropertyValue
    102 N5f1c166dc4a34574bdbd9ac3fd9a8540 rdf:first Nd46d1403049245cfaa30805e7073ffe3
    103 rdf:rest Nc229c53ae5694c949c9356f7caa1133a
    104 N67d67c1b022a486585773d7cba5672ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Genes, Bacterial
    106 rdf:type schema:DefinedTerm
    107 N736a23cca2a34de9bb56f5aa24f15c6d schema:issueNumber 6767
    108 rdf:type schema:PublicationIssue
    109 N8da1b5fdabd9475ab8a8ae91a9d76cf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name DNA-Binding Proteins
    111 rdf:type schema:DefinedTerm
    112 N9b18be7f817a40ac8f9711f5e7bb92a0 schema:affiliation Nd0d170e79cd143268261a8892721b1e5
    113 schema:familyName Collins
    114 schema:givenName James J.
    115 rdf:type schema:Person
    116 N9f1588ad446049d38ee2206f26462f88 schema:name nlm_unique_id
    117 schema:value 0410462
    118 rdf:type schema:PropertyValue
    119 Na9b0584a12aa4293ab332fa4bb9c196c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Viral Proteins
    121 rdf:type schema:DefinedTerm
    122 Nb54006b4380a4b408624b61d4bb4287b schema:name pubmed_id
    123 schema:value 10659857
    124 rdf:type schema:PropertyValue
    125 Nbf8d3575c40847388986e26a1e321e3b schema:name dimensions_id
    126 schema:value pub.1002786107
    127 rdf:type schema:PropertyValue
    128 Nc1297d73a5814f10a493cb7adbae7a90 schema:name *Department of Biomedical Engineering,
    129 rdf:type schema:Organization
    130 Nc202d49b2bb14c9bbd9671dfa7f6011c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Escherichia coli
    132 rdf:type schema:DefinedTerm
    133 Nc229c53ae5694c949c9356f7caa1133a rdf:first N239e7de6f3b947b294dc68bdbf6cff65
    134 rdf:rest Ne980e0e26ed64366bee4de3e34605ae6
    135 Nc27d51d7cf3f44a2ad001b2af674b58b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Models, Genetic
    137 rdf:type schema:DefinedTerm
    138 Nc65a1db598af47eaa4e7a6b45e7a2172 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Promoter Regions, Genetic
    140 rdf:type schema:DefinedTerm
    141 Nd0d170e79cd143268261a8892721b1e5 schema:name *Department of Biomedical Engineering,
    142 †Center for BioDynamics and
    143 rdf:type schema:Organization
    144 Nd46d1403049245cfaa30805e7073ffe3 schema:affiliation N20d52d0c15b6492eb90238de20b7b044
    145 schema:familyName Gardner
    146 schema:givenName Timothy S.
    147 rdf:type schema:Person
    148 Nd96fdc64724e4fee9b933cdbb9f6bb3d schema:name readcube_id
    149 schema:value 0d44338a62d19574bb1ea6808eec3479d9ed7a220f53445db54c7f2ba8712730
    150 rdf:type schema:PropertyValue
    151 Ndfc3f620139449d48b5facccdcc2141a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Repressor Proteins
    153 rdf:type schema:DefinedTerm
    154 Ne980e0e26ed64366bee4de3e34605ae6 rdf:first N9b18be7f817a40ac8f9711f5e7bb92a0
    155 rdf:rest rdf:nil
    156 Nfad729138c614176815f31ea94f59d57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Plasmids
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Biological Sciences
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Genetics
    164 rdf:type schema:DefinedTerm
    165 sg:journal.1018957 schema:issn 0090-0028
    166 1476-4687
    167 schema:name Nature
    168 rdf:type schema:Periodical
    169 sg:pub.10.1007/978-1-4612-0823-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050610527
    170 https://doi.org/10.1007/978-1-4612-0823-5
    171 rdf:type schema:CreativeWork
    172 https://app.dimensions.ai/details/publication/pub.1050610527 schema:CreativeWork
    173 https://app.dimensions.ai/details/publication/pub.1083300818 schema:CreativeWork
    174 https://doi.org/10.1016/0022-2836(85)90086-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020913154
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/0022-5193(73)90208-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522507
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/0022-5193(78)90127-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023846911
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/0025-5564(77)90016-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053458862
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/0065-2571(81)90019-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041142984
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/0378-1119(95)00685-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041746269
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/s0006-3495(71)86192-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004721769
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/s0006-3495(94)80516-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047933836
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/s0022-5193(05)80144-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001842048
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/s0022-5193(05)80350-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006266449
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/s0022-5193(74)80037-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046489642
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/s0022-5193(75)80056-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004063621
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1063/1.2807512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057869484
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1063/1.431518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058009550
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1073/pnas.94.3.814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019128746
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1093/nar/25.6.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043602121
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1101/sqb.1961.026.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060403442
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1126/science.281.5382.1519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007402934
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1126/science.283.5400.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563871
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1146/annurev.biophys.27.1.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182112
    213 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...