Construction of a genetic toggle switch in Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-01

AUTHORS

Timothy S. Gardner, Charles R. Cantor, James J. Collins

ABSTRACT

It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy. More... »

PAGES

339

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6767

VOLUME

403

Related Patents

  • Method For Inhibiting Proliferation Of Cells
  • Bacteria Engineered To Reduce Hyperphenylalaninemia
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Cell-Directed Synthesis Of Multifunctional Nanopatterns And Nanomaterials
  • Assembly Of High Fidelity Polynucleotides
  • Method For Suppressing Cell Growth
  • Multi-State Genetic Oscillator
  • Genetic Control Of Mammalian Cells With Synthetic Rna Regulatory Systems
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • In Vivo Gene Sensors
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Tunable Control Of Protein Degradation In Synthetic And Endogenous Bacterial Systems
  • Nucleic Acid-Based Logic Circuits
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Signal Activated Rna Interference
  • Bacteria Engineered To Reduce Hyperphenylalaninemia
  • Aptamer Regulated Nucleic Acids And Uses Thereof
  • Integrated—Ligand-Responsive Micrornas
  • Assembly Of High Fidelity Polynucleotides
  • Microfluidic Devices And Methods For Gene Synthesis
  • Modular Aptamer-Regulated Ribozymes
  • Reprogrammable Multicellular Synthetic Circuits
  • Novel Recombinases And Target Sequences
  • Modular Nucleic Acid-Based Circuits For Counters, Binary Operations, Memory, And Logic
  • Method And Apparatus For Sustaining Viability Of Biological Cells On A Substrate
  • Bacteria Engineered To Reduce Hyperphenylalaninemia
  • Biological Circuit Chemotactic Converters
  • Bacteria Engineered To Treat Diseases Associated With Hyperammonemia
  • Aptamer Regulated Nucleic Acids And Uses Thereof
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Cell-Directed Synthesis Of Multifunctional Nanopatterns And Nanomaterials
  • Biological Circuit Chemotactic Converters
  • Biological Analog-To-Digital And Digital-To-Analog Converters
  • Aptamer Regulated Nucleic Acids And Uses Thereof
  • Analog And Mixed-Signal Computation And Circuits In Living Cells
  • Method And Apparatus For Sustaining Viability Of Biological Cells On A Substrate
  • Modular Nucleic Acid-Based Circuits For Counters, Binary Operations, Memory And Logic
  • Biological Circuit Chemotactic Converters
  • Bistable Genetic Toggle Switch
  • In Vivo Gene Sensors
  • Riboregulator Compositions And Methods Of Use
  • Bistable Genetic Toggle Switch Comprising A Pair Of Reciprocal Repressors And A Positive Feedback Loop Based On Dna-Binding Proteins
  • Bacteria Engineered To Treat Diseases That Benefit From Reduced Gut Inflammation And/Or Tightened Gut Mucosal Barrier
  • Combinatorial Transcription Control For Programmed Genetic Response
  • Modular Polynucleotides For Ligand-Controlled Regulatory Systems
  • Iterative Nucleic Acid Assembly Using Activation Of Vector-Encoded Traits
  • Modular Aptamer-Regulated Ribozymes
  • Methods For Sorting Nucleic Acids And Multiplexed Preparative In Vitro Cloning
  • Molecular State Machines
  • Microfluidic Devices And Methods For Gene Synthesis
  • Higher-Order Cellular Information Processing Devices
  • Parallel Macromolecular Delivery And Biochemical/Electrochemical Interface To Cells Employing Nanostructures
  • General Composition Framework For Ligand-Controlled Rna Regulatory Systems
  • Tunable Control Of Protein Degradation In Synthetic And Endogenous Bacterial Systems
  • Adjustable Threshold Switch
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35002131

    DOI

    http://dx.doi.org/10.1038/35002131

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002786107

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10659857


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lac Repressors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Promoter Regions, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Repressor Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stochastic Processes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Viral Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Viral Regulatory and Accessory Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "*Department of Biomedical Engineering,", 
                "\u2020Center for BioDynamics and"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gardner", 
            "givenName": "Timothy S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "*Department of Biomedical Engineering,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cantor", 
            "givenName": "Charles R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "*Department of Biomedical Engineering,", 
                "\u2020Center for BioDynamics and"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Collins", 
            "givenName": "James J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0022-5193(05)80144-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001842048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(75)80056-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004063621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(71)86192-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004721769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(05)80350-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006266449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.281.5382.1519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007402934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.3.814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019128746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(85)90086-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020913154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(78)90127-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023846911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biophys.27.1.199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033182112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0065-2571(81)90019-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041142984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0065-2571(81)90019-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041142984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(95)00685-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041746269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.6.1203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043602121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(73)90208-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044522507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(74)80037-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046489642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(94)80516-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047933836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1050610527", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0823-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050610527", 
              "https://doi.org/10.1007/978-1-4612-0823-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0823-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050610527", 
              "https://doi.org/10.1007/978-1-4612-0823-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(77)90016-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053458862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2807512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057869484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.431518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058009550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.1961.026.01.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060403442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.283.5400.381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062563871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083300818", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-01", 
        "datePublishedReg": "2000-01-01", 
        "description": "It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/35002131", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6767", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "403"
          }
        ], 
        "name": "Construction of a genetic toggle switch in Escherichia coli", 
        "pagination": "339", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0d44338a62d19574bb1ea6808eec3479d9ed7a220f53445db54c7f2ba8712730"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10659857"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35002131"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002786107"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35002131", 
          "https://app.dimensions.ai/details/publication/pub.1002786107"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/35002131"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35002131'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35002131'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35002131'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35002131'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      67 URIs      36 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35002131 schema:about N04fc938625b14d9387e21e42586f4966
    2 N30d3a47223e34817a3defc551a3097a5
    3 N34d7758000a3451aa650d0c51d402e9a
    4 N39bb12b4e8324fe5bbbb6c4a13ff0bfc
    5 N78e2e681ffe24101868d6785b78fe5d0
    6 N81af604130cc4b9499c8f561b43aaae0
    7 N826a6d8c57ab46bdab0952df9a044ca7
    8 N84a0a8a6c5d142e397d2e220c301e75b
    9 N8784df9baa8441438857145e63fd8790
    10 N9a24d17b4eaa4fd1a59c216a2687b0e7
    11 Nd2a1aa9955ea4baaa65d113b44156581
    12 Ndbbd5c45c9a5427f8b3e8a1053fd7e79
    13 Ne5b59eb05c4e4ef8a3506a3c9e372992
    14 Ned0bb12b85884222a5502afbb74a14fd
    15 Nf1266d7d2c05404cb7101eb37522be97
    16 anzsrc-for:06
    17 anzsrc-for:0604
    18 schema:author Nb669175b174b4a328179e20a9d0501e4
    19 schema:citation sg:pub.10.1007/978-1-4612-0823-5
    20 https://app.dimensions.ai/details/publication/pub.1050610527
    21 https://app.dimensions.ai/details/publication/pub.1083300818
    22 https://doi.org/10.1016/0022-2836(85)90086-5
    23 https://doi.org/10.1016/0022-5193(73)90208-7
    24 https://doi.org/10.1016/0022-5193(78)90127-3
    25 https://doi.org/10.1016/0025-5564(77)90016-5
    26 https://doi.org/10.1016/0065-2571(81)90019-4
    27 https://doi.org/10.1016/0378-1119(95)00685-0
    28 https://doi.org/10.1016/s0006-3495(71)86192-1
    29 https://doi.org/10.1016/s0006-3495(94)80516-8
    30 https://doi.org/10.1016/s0022-5193(05)80144-4
    31 https://doi.org/10.1016/s0022-5193(05)80350-9
    32 https://doi.org/10.1016/s0022-5193(74)80037-8
    33 https://doi.org/10.1016/s0022-5193(75)80056-7
    34 https://doi.org/10.1063/1.2807512
    35 https://doi.org/10.1063/1.431518
    36 https://doi.org/10.1073/pnas.94.3.814
    37 https://doi.org/10.1093/nar/25.6.1203
    38 https://doi.org/10.1101/sqb.1961.026.01.048
    39 https://doi.org/10.1126/science.281.5382.1519
    40 https://doi.org/10.1126/science.283.5400.381
    41 https://doi.org/10.1146/annurev.biophys.27.1.199
    42 schema:datePublished 2000-01
    43 schema:datePublishedReg 2000-01-01
    44 schema:description It has been proposed' that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage lambda switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N1fe81abc59214ce390c2207e47b4dff0
    49 N34340d76ae68481ea0de981a027d327a
    50 sg:journal.1018957
    51 schema:name Construction of a genetic toggle switch in Escherichia coli
    52 schema:pagination 339
    53 schema:productId N20f1fa3d2800432fa8512a16cefd43a0
    54 N830daea32303418c8a4371fd29ea0dca
    55 Ncb57ba9030dd493d9cd19183407a02f4
    56 Nd94238459a3c40a3b3da10c343b14258
    57 Nef277356f5974478a4b3273a49a5a1d9
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002786107
    59 https://doi.org/10.1038/35002131
    60 schema:sdDatePublished 2019-04-11T12:27
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N4c05941200364bd19188f54c00d83617
    63 schema:url https://www.nature.com/articles/35002131
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N014d5ea0940c4fb09439064fcfd7842c schema:affiliation N6f3dd1622ba2469398c810d55a0de7aa
    68 schema:familyName Collins
    69 schema:givenName James J.
    70 rdf:type schema:Person
    71 N04fc938625b14d9387e21e42586f4966 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Viral Regulatory and Accessory Proteins
    73 rdf:type schema:DefinedTerm
    74 N0602f01df8fa432696acae3061728de7 rdf:first Ne66c622e995b430894772259c4e50cef
    75 rdf:rest N9cfbe62fcafe4afe879289f629400cdf
    76 N08f8ea4d2c73410f870fb43bc32e4b80 schema:affiliation N24c2532dd93d485086538f18f232386e
    77 schema:familyName Gardner
    78 schema:givenName Timothy S.
    79 rdf:type schema:Person
    80 N107312c79dc7456faada9d43887acce4 schema:name *Department of Biomedical Engineering,
    81 rdf:type schema:Organization
    82 N1fe81abc59214ce390c2207e47b4dff0 schema:volumeNumber 403
    83 rdf:type schema:PublicationVolume
    84 N20f1fa3d2800432fa8512a16cefd43a0 schema:name pubmed_id
    85 schema:value 10659857
    86 rdf:type schema:PropertyValue
    87 N24c2532dd93d485086538f18f232386e schema:name *Department of Biomedical Engineering,
    88 †Center for BioDynamics and
    89 rdf:type schema:Organization
    90 N30d3a47223e34817a3defc551a3097a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name DNA-Binding Proteins
    92 rdf:type schema:DefinedTerm
    93 N34340d76ae68481ea0de981a027d327a schema:issueNumber 6767
    94 rdf:type schema:PublicationIssue
    95 N34d7758000a3451aa650d0c51d402e9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Plasmids
    97 rdf:type schema:DefinedTerm
    98 N39bb12b4e8324fe5bbbb6c4a13ff0bfc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Escherichia coli Proteins
    100 rdf:type schema:DefinedTerm
    101 N4c05941200364bd19188f54c00d83617 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 N6f3dd1622ba2469398c810d55a0de7aa schema:name *Department of Biomedical Engineering,
    104 †Center for BioDynamics and
    105 rdf:type schema:Organization
    106 N78e2e681ffe24101868d6785b78fe5d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Promoter Regions, Genetic
    108 rdf:type schema:DefinedTerm
    109 N81af604130cc4b9499c8f561b43aaae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Models, Genetic
    111 rdf:type schema:DefinedTerm
    112 N826a6d8c57ab46bdab0952df9a044ca7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Stochastic Processes
    114 rdf:type schema:DefinedTerm
    115 N830daea32303418c8a4371fd29ea0dca schema:name dimensions_id
    116 schema:value pub.1002786107
    117 rdf:type schema:PropertyValue
    118 N84a0a8a6c5d142e397d2e220c301e75b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Transcription, Genetic
    120 rdf:type schema:DefinedTerm
    121 N8784df9baa8441438857145e63fd8790 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Lac Repressors
    123 rdf:type schema:DefinedTerm
    124 N9a24d17b4eaa4fd1a59c216a2687b0e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Bacterial Proteins
    126 rdf:type schema:DefinedTerm
    127 N9cfbe62fcafe4afe879289f629400cdf rdf:first N014d5ea0940c4fb09439064fcfd7842c
    128 rdf:rest rdf:nil
    129 Nb669175b174b4a328179e20a9d0501e4 rdf:first N08f8ea4d2c73410f870fb43bc32e4b80
    130 rdf:rest N0602f01df8fa432696acae3061728de7
    131 Ncb57ba9030dd493d9cd19183407a02f4 schema:name doi
    132 schema:value 10.1038/35002131
    133 rdf:type schema:PropertyValue
    134 Nd2a1aa9955ea4baaa65d113b44156581 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Gene Expression Regulation, Bacterial
    136 rdf:type schema:DefinedTerm
    137 Nd94238459a3c40a3b3da10c343b14258 schema:name nlm_unique_id
    138 schema:value 0410462
    139 rdf:type schema:PropertyValue
    140 Ndbbd5c45c9a5427f8b3e8a1053fd7e79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Repressor Proteins
    142 rdf:type schema:DefinedTerm
    143 Ne5b59eb05c4e4ef8a3506a3c9e372992 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Viral Proteins
    145 rdf:type schema:DefinedTerm
    146 Ne66c622e995b430894772259c4e50cef schema:affiliation N107312c79dc7456faada9d43887acce4
    147 schema:familyName Cantor
    148 schema:givenName Charles R.
    149 rdf:type schema:Person
    150 Ned0bb12b85884222a5502afbb74a14fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Genes, Bacterial
    152 rdf:type schema:DefinedTerm
    153 Nef277356f5974478a4b3273a49a5a1d9 schema:name readcube_id
    154 schema:value 0d44338a62d19574bb1ea6808eec3479d9ed7a220f53445db54c7f2ba8712730
    155 rdf:type schema:PropertyValue
    156 Nf1266d7d2c05404cb7101eb37522be97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Escherichia coli
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Biological Sciences
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Genetics
    164 rdf:type schema:DefinedTerm
    165 sg:journal.1018957 schema:issn 0090-0028
    166 1476-4687
    167 schema:name Nature
    168 rdf:type schema:Periodical
    169 sg:pub.10.1007/978-1-4612-0823-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050610527
    170 https://doi.org/10.1007/978-1-4612-0823-5
    171 rdf:type schema:CreativeWork
    172 https://app.dimensions.ai/details/publication/pub.1050610527 schema:CreativeWork
    173 https://app.dimensions.ai/details/publication/pub.1083300818 schema:CreativeWork
    174 https://doi.org/10.1016/0022-2836(85)90086-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020913154
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/0022-5193(73)90208-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522507
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/0022-5193(78)90127-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023846911
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/0025-5564(77)90016-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053458862
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/0065-2571(81)90019-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041142984
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/0378-1119(95)00685-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041746269
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/s0006-3495(71)86192-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004721769
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/s0006-3495(94)80516-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047933836
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/s0022-5193(05)80144-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001842048
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/s0022-5193(05)80350-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006266449
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/s0022-5193(74)80037-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046489642
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/s0022-5193(75)80056-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004063621
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1063/1.2807512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057869484
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1063/1.431518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058009550
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1073/pnas.94.3.814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019128746
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1093/nar/25.6.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043602121
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1101/sqb.1961.026.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060403442
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1126/science.281.5382.1519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007402934
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1126/science.283.5400.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563871
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1146/annurev.biophys.27.1.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182112
    213 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...