X-ray diffraction evidence for aromatic π hydrogen bonding to water View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-02

AUTHORS

Jerry L. Atwood, Fumio Hamada, Kerry D. Robinson, G. William Orr, Rebecca L. Vincent

ABSTRACT

THEinteraction of water with aromatic moieties is of importance in biological systems, as most encounter an aqueous environment during their normal functions. For example, common constituents of globular proteins such as phenylalanine, tryptophan and tyrosine possess aromatic side-chains1 that may encounter water molecules inside the protein structure2. As a model for hydrogen-bonding interactions with aromatics, we have performed X-ray diffraction studies on crystalline Na4[calix[4]arene sulphonate].13.5H2O. Calixarene molecules3,4contain hydrophobic cavities comprised of aromatic groups, rimmed, in the case of the water-soluble sulphonates (R = -SO3Na), by hydrophilic groups5,6. In the absence of a hydrophobic guest, the cavity invariably contains a water molecule. The low-temperature X-ray crystal structure of this compound (see Table 1 and Fig. 1) shows direct evidence for hydrogen bonding between water and the aromatic π electrons in the solid state. More... »

PAGES

683-684

Journal

TITLE

Nature

ISSUE

6311

VOLUME

349

Related Patents

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/349683a0

DOI

http://dx.doi.org/10.1038/349683a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051142011


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Atwood", 
        "givenName": "Jerry L.", 
        "id": "sg:person.0721621051.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721621051.47"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hamada", 
        "givenName": "Fumio", 
        "id": "sg:person.013301630365.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301630365.39"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Robinson", 
        "givenName": "Kerry D.", 
        "id": "sg:person.011007366511.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007366511.03"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Orr", 
        "givenName": "G. William", 
        "id": "sg:person.012320420377.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320420377.76"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Vincent", 
        "givenName": "Rebecca L.", 
        "id": "sg:person.012160077033.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160077033.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/anie.198813611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037335428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00390a040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055173454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100259a031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055661497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00168a022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055711005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00221a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055715361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00229a011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055716024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00415a054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055730753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.445173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058023195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.451181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058029198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.456207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058034219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3892686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062622081"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-02", 
    "datePublishedReg": "1991-02-01", 
    "description": "THEinteraction of water with aromatic moieties is of importance in biological systems, as most encounter an aqueous environment during their normal functions. For example, common constituents of globular proteins such as phenylalanine, tryptophan and tyrosine possess aromatic side-chains1 that may encounter water molecules inside the protein structure2. As a model for hydrogen-bonding interactions with aromatics, we have performed X-ray diffraction studies on crystalline Na4[calix[4]arene sulphonate].13.5H2O. Calixarene molecules3,4contain hydrophobic cavities comprised of aromatic groups, rimmed, in the case of the water-soluble sulphonates (R = -SO3Na), by hydrophilic groups5,6. In the absence of a hydrophobic guest, the cavity invariably contains a water molecule. The low-temperature X-ray crystal structure of this compound (see Table 1 and Fig. 1) shows direct evidence for hydrogen bonding between water and the aromatic \u03c0 electrons in the solid state.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/349683a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6311", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "349"
      }
    ], 
    "name": "X-ray diffraction evidence for aromatic \u03c0 hydrogen bonding to water", 
    "pagination": "683-684", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f39f19c42a8264e0a9cc810619214d534f88da4e37db65657c775836889f38b8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/349683a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051142011"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/349683a0", 
      "https://app.dimensions.ai/details/publication/pub.1051142011"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/349683a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/349683a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/349683a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/349683a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/349683a0'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/349683a0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N4e56321ad10643bea89c84d57bad8f52
4 schema:citation https://doi.org/10.1002/anie.198813611
5 https://doi.org/10.1021/bi00390a040
6 https://doi.org/10.1021/j100259a031
7 https://doi.org/10.1021/ja00168a022
8 https://doi.org/10.1021/ja00221a016
9 https://doi.org/10.1021/ja00229a011
10 https://doi.org/10.1021/ja00415a054
11 https://doi.org/10.1063/1.445173
12 https://doi.org/10.1063/1.451181
13 https://doi.org/10.1063/1.456207
14 https://doi.org/10.1126/science.3892686
15 schema:datePublished 1991-02
16 schema:datePublishedReg 1991-02-01
17 schema:description THEinteraction of water with aromatic moieties is of importance in biological systems, as most encounter an aqueous environment during their normal functions. For example, common constituents of globular proteins such as phenylalanine, tryptophan and tyrosine possess aromatic side-chains1 that may encounter water molecules inside the protein structure2. As a model for hydrogen-bonding interactions with aromatics, we have performed X-ray diffraction studies on crystalline Na4[calix[4]arene sulphonate].13.5H2O. Calixarene molecules3,4contain hydrophobic cavities comprised of aromatic groups, rimmed, in the case of the water-soluble sulphonates (R = -SO3Na), by hydrophilic groups5,6. In the absence of a hydrophobic guest, the cavity invariably contains a water molecule. The low-temperature X-ray crystal structure of this compound (see Table 1 and Fig. 1) shows direct evidence for hydrogen bonding between water and the aromatic π electrons in the solid state.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N19ec86ecddc74a499d285ef00fcdd672
22 N8824aac7a4aa48bcaf8cb4059b3dab9f
23 sg:journal.1018957
24 schema:name X-ray diffraction evidence for aromatic π hydrogen bonding to water
25 schema:pagination 683-684
26 schema:productId N1c392809508c4465af850df4a07cb5ff
27 N7c841ccdd2184354aa0becab956a9c03
28 Nd978c9abc5bb4e66b2c4098cd3276d00
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051142011
30 https://doi.org/10.1038/349683a0
31 schema:sdDatePublished 2019-04-11T00:04
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N034630fe435c4663813fc9a3ee0f45c6
34 schema:url http://www.nature.com/articles/349683a0
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N034630fe435c4663813fc9a3ee0f45c6 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N047a44810faf4f2e81d7502919acb365 rdf:first sg:person.013301630365.39
41 rdf:rest N3ca1e4c297a14aba90d67bf4e74491a3
42 N18d419d8f78a4b458c8d7aa4beb8163a rdf:first sg:person.012160077033.07
43 rdf:rest rdf:nil
44 N19ec86ecddc74a499d285ef00fcdd672 schema:issueNumber 6311
45 rdf:type schema:PublicationIssue
46 N1c392809508c4465af850df4a07cb5ff schema:name readcube_id
47 schema:value f39f19c42a8264e0a9cc810619214d534f88da4e37db65657c775836889f38b8
48 rdf:type schema:PropertyValue
49 N3ca1e4c297a14aba90d67bf4e74491a3 rdf:first sg:person.011007366511.03
50 rdf:rest N594015af356d491f9b11ffc4d8418bfb
51 N4e56321ad10643bea89c84d57bad8f52 rdf:first sg:person.0721621051.47
52 rdf:rest N047a44810faf4f2e81d7502919acb365
53 N594015af356d491f9b11ffc4d8418bfb rdf:first sg:person.012320420377.76
54 rdf:rest N18d419d8f78a4b458c8d7aa4beb8163a
55 N7c841ccdd2184354aa0becab956a9c03 schema:name doi
56 schema:value 10.1038/349683a0
57 rdf:type schema:PropertyValue
58 N8824aac7a4aa48bcaf8cb4059b3dab9f schema:volumeNumber 349
59 rdf:type schema:PublicationVolume
60 Nd978c9abc5bb4e66b2c4098cd3276d00 schema:name dimensions_id
61 schema:value pub.1051142011
62 rdf:type schema:PropertyValue
63 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
64 schema:name Chemical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
67 schema:name Physical Chemistry (incl. Structural)
68 rdf:type schema:DefinedTerm
69 sg:journal.1018957 schema:issn 0090-0028
70 1476-4687
71 schema:name Nature
72 rdf:type schema:Periodical
73 sg:person.011007366511.03 schema:familyName Robinson
74 schema:givenName Kerry D.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007366511.03
76 rdf:type schema:Person
77 sg:person.012160077033.07 schema:familyName Vincent
78 schema:givenName Rebecca L.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160077033.07
80 rdf:type schema:Person
81 sg:person.012320420377.76 schema:familyName Orr
82 schema:givenName G. William
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320420377.76
84 rdf:type schema:Person
85 sg:person.013301630365.39 schema:familyName Hamada
86 schema:givenName Fumio
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301630365.39
88 rdf:type schema:Person
89 sg:person.0721621051.47 schema:familyName Atwood
90 schema:givenName Jerry L.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721621051.47
92 rdf:type schema:Person
93 https://doi.org/10.1002/anie.198813611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037335428
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1021/bi00390a040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055173454
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1021/j100259a031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055661497
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1021/ja00168a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055711005
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1021/ja00221a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055715361
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/ja00229a011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055716024
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/ja00415a054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055730753
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.445173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058023195
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.451181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058029198
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.456207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058034219
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1126/science.3892686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062622081
114 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...