Evidence from chronosequence studies for a low carbon-storage potential of soils View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-11

AUTHORS

William H. Schlesinger

ABSTRACT

OVER most of the Earth's land surface, the amount of carbon stored in soil organic matter exceeds by a factor of two or three the amount stored in living vegetation. This pool of soil carbon is large (1.5 × 1018 g)1,2 and plays a dynamic part in the geochemical carbon cycle. Prentice and Fung3 have suggested that terrestrial vegetation and soils would act as a large sink for atmospheric carbon dioxide if its concentration were twice the present level. Here I use data from chronosequence studies to show that the production of refractory humus substances in soils sequesters only ∼0.4 × 1015 g C yr−1 from the atmosphere, accounting for just 0.7% of terrestrial net primary production. Moreover, agricultural practices tend, on balance, to cause a release of soil carbon to the atmosphere4,5. Thus if the terrestrial biosphere is indeed to act as a carbon sink under future elevated levels of carbon dioxide, this would be more likely to be the result of changes in the distribution and biomass of terrestrial vegetation than of changes in the accumulation of soil organic matter. More... »

PAGES

232-234

Journal

TITLE

Nature

ISSUE

6298

VOLUME

348

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/348232a0

DOI

http://dx.doi.org/10.1038/348232a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040274744


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Schlesinger", 
        "givenName": "William H.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/273040a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000108883", 
          "https://doi.org/10.1038/273040a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/346048a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001247960", 
          "https://doi.org/10.1038/346048a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1981.tb01742.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004654330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1981.tb01742.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004654330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-196709000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005902443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-196709000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005902443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/298156a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009479795", 
          "https://doi.org/10.1038/298156a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(74)90057-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011615218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(74)90057-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011615218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/gb001i001p00061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019830218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(84)90017-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025067069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(84)90017-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025067069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00385225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038261264", 
          "https://doi.org/10.1007/bf00385225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00385225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038261264", 
          "https://doi.org/10.1007/bf00385225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042014685", 
          "https://doi.org/10.1007/bf00139060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042014685", 
          "https://doi.org/10.1007/bf00139060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/sr9890607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045418464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.230.4726.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062531483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2260396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069853555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2475/ajs.282.4.451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070841679"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-11", 
    "datePublishedReg": "1990-11-01", 
    "description": "OVER most of the Earth's land surface, the amount of carbon stored in soil organic matter exceeds by a factor of two or three the amount stored in living vegetation. This pool of soil carbon is large (1.5 \u00d7 1018 g)1,2 and plays a dynamic part in the geochemical carbon cycle. Prentice and Fung3 have suggested that terrestrial vegetation and soils would act as a large sink for atmospheric carbon dioxide if its concentration were twice the present level. Here I use data from chronosequence studies to show that the production of refractory humus substances in soils sequesters only \u223c0.4 \u00d7 1015 g C yr\u22121 from the atmosphere, accounting for just 0.7% of terrestrial net primary production. Moreover, agricultural practices tend, on balance, to cause a release of soil carbon to the atmosphere4,5. Thus if the terrestrial biosphere is indeed to act as a carbon sink under future elevated levels of carbon dioxide, this would be more likely to be the result of changes in the distribution and biomass of terrestrial vegetation than of changes in the accumulation of soil organic matter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/348232a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6298", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "348"
      }
    ], 
    "name": "Evidence from chronosequence studies for a low carbon-storage potential of soils", 
    "pagination": "232-234", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bfda2ff0e16ecab251be1a120e455c14355e20d79a655ad30b9d28d85cfecb0f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/348232a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040274744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/348232a0", 
      "https://app.dimensions.ai/details/publication/pub.1040274744"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/348232a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/348232a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/348232a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/348232a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/348232a0'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/348232a0 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author Nfac680e9ed2340e2890bb0022454d1d5
4 schema:citation sg:pub.10.1007/bf00139060
5 sg:pub.10.1007/bf00385225
6 sg:pub.10.1038/273040a0
7 sg:pub.10.1038/298156a0
8 sg:pub.10.1038/346048a0
9 https://doi.org/10.1016/0016-7037(74)90057-x
10 https://doi.org/10.1016/0016-7061(84)90017-x
11 https://doi.org/10.1029/gb001i001p00061
12 https://doi.org/10.1071/sr9890607
13 https://doi.org/10.1097/00010694-196709000-00010
14 https://doi.org/10.1111/j.2153-3490.1981.tb01742.x
15 https://doi.org/10.1126/science.230.4726.625
16 https://doi.org/10.2307/2260396
17 https://doi.org/10.2475/ajs.282.4.451
18 schema:datePublished 1990-11
19 schema:datePublishedReg 1990-11-01
20 schema:description OVER most of the Earth's land surface, the amount of carbon stored in soil organic matter exceeds by a factor of two or three the amount stored in living vegetation. This pool of soil carbon is large (1.5 × 1018 g)1,2 and plays a dynamic part in the geochemical carbon cycle. Prentice and Fung3 have suggested that terrestrial vegetation and soils would act as a large sink for atmospheric carbon dioxide if its concentration were twice the present level. Here I use data from chronosequence studies to show that the production of refractory humus substances in soils sequesters only ∼0.4 × 1015 g C yr−1 from the atmosphere, accounting for just 0.7% of terrestrial net primary production. Moreover, agricultural practices tend, on balance, to cause a release of soil carbon to the atmosphere4,5. Thus if the terrestrial biosphere is indeed to act as a carbon sink under future elevated levels of carbon dioxide, this would be more likely to be the result of changes in the distribution and biomass of terrestrial vegetation than of changes in the accumulation of soil organic matter.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nea35c13e17cc4f1a9a3a79041b34ae32
25 Nefc2977774a74ff4a9cdbd50f059d581
26 sg:journal.1018957
27 schema:name Evidence from chronosequence studies for a low carbon-storage potential of soils
28 schema:pagination 232-234
29 schema:productId N38dcee7d1bef4bdab1c8f0fa55946760
30 N3fddcdb957904c3c9b50e3f21605417c
31 N73f425a1223e4efb9140cb64bc1ec988
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040274744
33 https://doi.org/10.1038/348232a0
34 schema:sdDatePublished 2019-04-10T22:19
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nb3db24c34a80476387267c27b3a5fa9c
37 schema:url http://www.nature.com/articles/348232a0
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N3089093ce5bd4087b97ca70ce95bbfa2 schema:familyName Schlesinger
42 schema:givenName William H.
43 rdf:type schema:Person
44 N38dcee7d1bef4bdab1c8f0fa55946760 schema:name doi
45 schema:value 10.1038/348232a0
46 rdf:type schema:PropertyValue
47 N3fddcdb957904c3c9b50e3f21605417c schema:name readcube_id
48 schema:value bfda2ff0e16ecab251be1a120e455c14355e20d79a655ad30b9d28d85cfecb0f
49 rdf:type schema:PropertyValue
50 N73f425a1223e4efb9140cb64bc1ec988 schema:name dimensions_id
51 schema:value pub.1040274744
52 rdf:type schema:PropertyValue
53 Nb3db24c34a80476387267c27b3a5fa9c schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nea35c13e17cc4f1a9a3a79041b34ae32 schema:issueNumber 6298
56 rdf:type schema:PublicationIssue
57 Nefc2977774a74ff4a9cdbd50f059d581 schema:volumeNumber 348
58 rdf:type schema:PublicationVolume
59 Nfac680e9ed2340e2890bb0022454d1d5 rdf:first N3089093ce5bd4087b97ca70ce95bbfa2
60 rdf:rest rdf:nil
61 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
62 schema:name Environmental Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
65 schema:name Soil Sciences
66 rdf:type schema:DefinedTerm
67 sg:journal.1018957 schema:issn 0090-0028
68 1476-4687
69 schema:name Nature
70 rdf:type schema:Periodical
71 sg:pub.10.1007/bf00139060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042014685
72 https://doi.org/10.1007/bf00139060
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf00385225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038261264
75 https://doi.org/10.1007/bf00385225
76 rdf:type schema:CreativeWork
77 sg:pub.10.1038/273040a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000108883
78 https://doi.org/10.1038/273040a0
79 rdf:type schema:CreativeWork
80 sg:pub.10.1038/298156a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009479795
81 https://doi.org/10.1038/298156a0
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/346048a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001247960
84 https://doi.org/10.1038/346048a0
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0016-7037(74)90057-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011615218
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0016-7061(84)90017-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025067069
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1029/gb001i001p00061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019830218
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1071/sr9890607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045418464
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1097/00010694-196709000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005902443
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1111/j.2153-3490.1981.tb01742.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004654330
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1126/science.230.4726.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062531483
99 rdf:type schema:CreativeWork
100 https://doi.org/10.2307/2260396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069853555
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2475/ajs.282.4.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070841679
103 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...