Telomeres shorten during ageing of human fibroblasts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-05

AUTHORS

Calvin B. Harley, A. Bruce Futcher, Carol W. Greider

ABSTRACT

THE terminus of a DNA helix has been called its Achilles' heel1. Thus to prevent possible incomplete replication2 and instability3,4 of the termini of linear DNA, eukaryotic chromosomes end in characteristic repetitive DNA sequences within specialized structures called telomeres5. In immortal cells, loss of telomeric DNA due to degradation or incomplete replication is apparently balanced by telomere elongation6–10, which may involve de novo synthesis of additional repeats by a novel DNA polymerase called telomerase11–14. Such a polymerase has been recently detected in HeLa cells15. It has been proposed that the finite doubling capacity of normal mammalian cells is due to a loss of telomeric DNA and eventual deletion of essential sequences1,16,17. In yeast, the est1 mutation causes gradual loss of telomeric DNA and eventual cell death mimicking senescence in higher eukaryotic cells17. Here, we show that the amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo. It is not known whether this loss of DNA has a causal role in senescence. More... »

PAGES

458-460

Journal

TITLE

Nature

ISSUE

6274

VOLUME

345

Related Patents

  • Increasing Telomere Length In A Cell
  • Compositions And Methods For Skin Conditioning
  • Multiplex Quantitative Pcr
  • Nucleic Acid Construct And Use Of The Same
  • Antibody To Telomerase Reverse Transcriptive
  • Oligonucleotides Having A Conserved G4 Core Sequence
  • Method For Eliciting An Immune Response To Human Telomerase Reverse Transcriptase
  • Human Telomerase Catalytic Subunit
  • Mammalian Telomerase
  • Method For Detecting Multiple Copies Of A Repeat Sequence In A Nucleic Acid Molecule
  • Compositions And Methods For Increasing Telomerase Activity
  • Reducing Non-Target Nucleic Acid Dependent Amplifications: Amplifying Repetitive Nucleic Acid Sequences
  • Therapy And Diagnosis Of Conditions Related To Telomere Length And/Or Telomerase Activity
  • Telomerase Activity Associated With Hematological And Colorectal Malignancies
  • Modulation Of Line-1 Reverse Transcriptase
  • Method For Identification Of Sensitivity Of A Patient To Telomerase Inhibition Therapy
  • Modulation Of Line-1 Reverse Transcriptase
  • Methods For Monitoring The Binding Of A1/Up1 To Single-Stranded Nucleic Acid Sequences, And To Measure The Effect Of This Binding On Telomere Extension And Protection
  • Treating Cancer Using A Telomerase Vaccine
  • Rna Component Of Telomerase
  • Biomarker For Replicative Senescence
  • Mammalian Telomerase
  • Telomerase Reverse Transcriptase-Based Therapies
  • Mammalian Telomerase
  • Mammalian Telomerase
  • Polynucleotides Encoding Trf1 Binding Proteins
  • Screening Methods To Identify Inhibitors Of Telomerase Activity
  • Rna Component Of Mouse, Rat, Chinese Hamster And Bovine Telomerase
  • Synthesis Of 1,8-Dichloro-Anthracene Analogues And Pharmaceutical Compositions Based Thereon
  • Nucleic Acids Encoding Inactive Variants Of Human Telomerase
  • Telomerase Activity Assays
  • Methods Of Predicting Mortality Risk By Determining Telomere Length
  • Methods For Cancer Diagnosis And Prognosis
  • Telomerase Activity Assays
  • Selective Binding Agents Of Telomerase
  • Compositions And Methods For Increasing Telomerase Activity
  • Diagnostic Markers For Treating Cell Proliferative Disorders With Telomerase Inhibitors
  • Diagnostic Markers For Treating Cell Proliferative Disorders With Telomerase Inhibitors
  • Methods Of Screening For Compounds That Derepress Or Increase Telomerase Activity
  • Telomerase Activity Assays
  • Telomerase
  • Modulation Of Trf1 For Brain Cancer Treatment
  • Automatable Rapid Test For Detection Of Cancer, Based On Telomerase (Htc) Mrna With Specific Primers And Probes
  • Telomerase Reverse Transcriptase For Protection Against Ageing
  • Mammalian Telomerase
  • Kit For Detection Of Telomerase Reverse Transcriptase Nucleic Acids
  • Nucleic Acids Encoding Human Telomerase Reverse Transcriptase And Related Homologs
  • Modulation Of Telomere Length By Oligonucleotides Having A G-Core Sequence
  • Assays For The Dna Component Of Human Telomerase
  • Sirt4 Activities
  • Diagnostic Methods For Conditions Associated With Elevated Cellular Levels Of Telomerase Activity
  • Methods Of Predicting Mortality Risk By Determining Telomere Length
  • Method For Detecting Polynucleotides Encoding Telomerase
  • Methods Of Nad-Dependent Deacetylation Of A Lysine Residue In A Protein
  • Compositions And Methods For Increasing Telomerase Activity
  • Compositions And Methods For Increasing Telomerase Activity
  • Compositions And Methods For Increasing Telomerase Activity
  • Monochrome Multiplex Quantitative Pcr
  • Mammalian Telomerase
  • Identifying Lifespan-Altering Agents
  • Methods For Cancer Diagnosis And Prognosis
  • Method For Identification Of Sensitivity Of A Patient To Telomerase Inhibition Therapy
  • Modulation Of Trf1 For Brain Cancer Treatment
  • Extract Of Cercis Chinensis Having Anti-Oxidant Activity And Anti-Aging Activity, And Cosmetical Composition Containing The Extract For Anti-Oxidation, Skin-Aging Protection And Wrinkle Improvement
  • Telomerase Activity Assays
  • Methods For Identifying Agents That Alter Nad-Dependent Deacetylation Activity Of A Sir2 Protein
  • Measures Of Short Telomere Abundance
  • Increasing The Proliferative Capacity Of Cells Using Telomerase Reverse Transcriptase
  • Telomerase Extraction Method
  • Mammalian Cells That Have Increased Proliferative Capacity
  • Determination Of Molecular Age By Detection Of Ink4a/Arf Expression
  • Monochrome Multiplex Quantitative Pcr
  • Telomerase Reverse Transcriptase For Protection Against Ageing
  • T-Cells For Use In T-Cell Therapy
  • Sir2 Activity
  • Mammalian Telomerase Rna Gene Promoter
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/345458a0

    DOI

    http://dx.doi.org/10.1038/345458a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036859629

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/2342578


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Survival", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fibroblasts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, McMaster University, 1200 Main Street West, L8N 3Z5, Hamilton, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.25073.33", 
              "name": [
                "Department of Biochemistry, McMaster University, 1200 Main Street West, L8N 3Z5, Hamilton, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harley", 
            "givenName": "Calvin B.", 
            "id": "sg:person.01317151702.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317151702.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.225279.9", 
              "name": [
                "Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Futcher", 
            "givenName": "A. Bruce", 
            "id": "sg:person.01020436446.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020436446.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.225279.9", 
              "name": [
                "Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Greider", 
            "givenName": "Carol W.", 
            "id": "sg:person.0703533536.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703533536.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/303592a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021825281", 
              "https://doi.org/10.1038/303592a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/0-89603-150-0:25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026725543", 
              "https://doi.org/10.1385/0-89603-150-0:25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338771a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053509641", 
              "https://doi.org/10.1038/338771a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/337331a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037795478", 
              "https://doi.org/10.1038/337331a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/newbio239197a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040598160", 
              "https://doi.org/10.1038/newbio239197a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/310154a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018735391", 
              "https://doi.org/10.1038/310154a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00280554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009328703", 
              "https://doi.org/10.1007/bf00280554"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1990-05", 
        "datePublishedReg": "1990-05-01", 
        "description": "THE terminus of a DNA helix has been called its Achilles' heel1. Thus to prevent possible incomplete replication2 and instability3,4 of the termini of linear DNA, eukaryotic chromosomes end in characteristic repetitive DNA sequences within specialized structures called telomeres5. In immortal cells, loss of telomeric DNA due to degradation or incomplete replication is apparently balanced by telomere elongation6\u201310, which may involve de novo synthesis of additional repeats by a novel DNA polymerase called telomerase11\u201314. Such a polymerase has been recently detected in HeLa cells15. It has been proposed that the finite doubling capacity of normal mammalian cells is due to a loss of telomeric DNA and eventual deletion of essential sequences1,16,17. In yeast, the est1 mutation causes gradual loss of telomeric DNA and eventual cell death mimicking senescence in higher eukaryotic cells17. Here, we show that the amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo. It is not known whether this loss of DNA has a causal role in senescence.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/345458a0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6274", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "345"
          }
        ], 
        "keywords": [
          "telomeric DNA", 
          "repetitive DNA sequences", 
          "novel DNA polymerase", 
          "normal mammalian cells", 
          "human fibroblasts", 
          "eventual cell death", 
          "loss of DNA", 
          "eukaryotic chromosomes", 
          "mammalian cells", 
          "DNA sequences", 
          "incomplete replication", 
          "de novo synthesis", 
          "additional repeats", 
          "specialized structures", 
          "immortal cells", 
          "linear DNA", 
          "cell death", 
          "DNA polymerase", 
          "DNA helix", 
          "DNA", 
          "eventual deletion", 
          "novo synthesis", 
          "terminus", 
          "senescence", 
          "polymerase", 
          "serial passage", 
          "fibroblasts", 
          "cells", 
          "causal role", 
          "chromosomes", 
          "telomeres", 
          "yeast", 
          "repeats", 
          "gradual loss", 
          "helix", 
          "deletion", 
          "mutations", 
          "sequence", 
          "replication", 
          "vitro", 
          "vivo", 
          "loss", 
          "fact decrease", 
          "death", 
          "degradation", 
          "role", 
          "function", 
          "aging", 
          "synthesis", 
          "decrease", 
          "structure", 
          "length", 
          "passage", 
          "amount", 
          "capacity"
        ], 
        "name": "Telomeres shorten during ageing of human fibroblasts", 
        "pagination": "458-460", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036859629"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/345458a0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "2342578"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/345458a0", 
          "https://app.dimensions.ai/details/publication/pub.1036859629"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_256.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/345458a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/345458a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/345458a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/345458a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/345458a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      22 PREDICATES      95 URIs      80 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/345458a0 schema:about N6ba9fa880a964d2284bf752b35338a4e
    2 N7c8c9b1272c545d0b37c022da69b8809
    3 N867a732cd32547278f0aaae1e41ee380
    4 Nc3ecb9d4f59f4de6984435325fbd9044
    5 Nc822b50f97324fcc8b9aaa2fa5b5a480
    6 Nd392f812f635417cb40ad85f561bbcb0
    7 anzsrc-for:06
    8 anzsrc-for:0601
    9 schema:author N72f809538ee9467d95ad31cc96b0b493
    10 schema:citation sg:pub.10.1007/bf00280554
    11 sg:pub.10.1038/303592a0
    12 sg:pub.10.1038/310154a0
    13 sg:pub.10.1038/337331a0
    14 sg:pub.10.1038/338771a0
    15 sg:pub.10.1038/newbio239197a0
    16 sg:pub.10.1385/0-89603-150-0:25
    17 schema:datePublished 1990-05
    18 schema:datePublishedReg 1990-05-01
    19 schema:description THE terminus of a DNA helix has been called its Achilles' heel1. Thus to prevent possible incomplete replication2 and instability3,4 of the termini of linear DNA, eukaryotic chromosomes end in characteristic repetitive DNA sequences within specialized structures called telomeres5. In immortal cells, loss of telomeric DNA due to degradation or incomplete replication is apparently balanced by telomere elongation6–10, which may involve de novo synthesis of additional repeats by a novel DNA polymerase called telomerase11–14. Such a polymerase has been recently detected in HeLa cells15. It has been proposed that the finite doubling capacity of normal mammalian cells is due to a loss of telomeric DNA and eventual deletion of essential sequences1,16,17. In yeast, the est1 mutation causes gradual loss of telomeric DNA and eventual cell death mimicking senescence in higher eukaryotic cells17. Here, we show that the amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo. It is not known whether this loss of DNA has a causal role in senescence.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N49df5f19668b456890501700c497e506
    24 Nbf784ff54e034d3c8627741baed9ef7c
    25 sg:journal.1018957
    26 schema:keywords DNA
    27 DNA helix
    28 DNA polymerase
    29 DNA sequences
    30 additional repeats
    31 aging
    32 amount
    33 capacity
    34 causal role
    35 cell death
    36 cells
    37 chromosomes
    38 de novo synthesis
    39 death
    40 decrease
    41 degradation
    42 deletion
    43 eukaryotic chromosomes
    44 eventual cell death
    45 eventual deletion
    46 fact decrease
    47 fibroblasts
    48 function
    49 gradual loss
    50 helix
    51 human fibroblasts
    52 immortal cells
    53 incomplete replication
    54 length
    55 linear DNA
    56 loss
    57 loss of DNA
    58 mammalian cells
    59 mutations
    60 normal mammalian cells
    61 novel DNA polymerase
    62 novo synthesis
    63 passage
    64 polymerase
    65 repeats
    66 repetitive DNA sequences
    67 replication
    68 role
    69 senescence
    70 sequence
    71 serial passage
    72 specialized structures
    73 structure
    74 synthesis
    75 telomeres
    76 telomeric DNA
    77 terminus
    78 vitro
    79 vivo
    80 yeast
    81 schema:name Telomeres shorten during ageing of human fibroblasts
    82 schema:pagination 458-460
    83 schema:productId N1ea328ec15db463b831582dd80129d5b
    84 Nb65f3a5b1b48469c9dff0064b856c29b
    85 Nbd5f124ffffd47c1912f3d8947199d2d
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036859629
    87 https://doi.org/10.1038/345458a0
    88 schema:sdDatePublished 2022-05-10T09:47
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Nfd3b075cd327462ba5d0f2e1f0e61632
    91 schema:url https://doi.org/10.1038/345458a0
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N1ea328ec15db463b831582dd80129d5b schema:name pubmed_id
    96 schema:value 2342578
    97 rdf:type schema:PropertyValue
    98 N2a481157797249bcb9e2cdc87735eddb rdf:first sg:person.0703533536.40
    99 rdf:rest rdf:nil
    100 N49df5f19668b456890501700c497e506 schema:volumeNumber 345
    101 rdf:type schema:PublicationVolume
    102 N6ba9fa880a964d2284bf752b35338a4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Humans
    104 rdf:type schema:DefinedTerm
    105 N72f809538ee9467d95ad31cc96b0b493 rdf:first sg:person.01317151702.26
    106 rdf:rest Ne2823c95fbd8423293853aad6452510c
    107 N7c8c9b1272c545d0b37c022da69b8809 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Chromosomes
    109 rdf:type schema:DefinedTerm
    110 N867a732cd32547278f0aaae1e41ee380 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Aging
    112 rdf:type schema:DefinedTerm
    113 Nb65f3a5b1b48469c9dff0064b856c29b schema:name dimensions_id
    114 schema:value pub.1036859629
    115 rdf:type schema:PropertyValue
    116 Nbd5f124ffffd47c1912f3d8947199d2d schema:name doi
    117 schema:value 10.1038/345458a0
    118 rdf:type schema:PropertyValue
    119 Nbf784ff54e034d3c8627741baed9ef7c schema:issueNumber 6274
    120 rdf:type schema:PublicationIssue
    121 Nc3ecb9d4f59f4de6984435325fbd9044 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Fibroblasts
    123 rdf:type schema:DefinedTerm
    124 Nc822b50f97324fcc8b9aaa2fa5b5a480 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Cell Survival
    126 rdf:type schema:DefinedTerm
    127 Nd392f812f635417cb40ad85f561bbcb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Cells, Cultured
    129 rdf:type schema:DefinedTerm
    130 Ne2823c95fbd8423293853aad6452510c rdf:first sg:person.01020436446.27
    131 rdf:rest N2a481157797249bcb9e2cdc87735eddb
    132 Nfd3b075cd327462ba5d0f2e1f0e61632 schema:name Springer Nature - SN SciGraph project
    133 rdf:type schema:Organization
    134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Biological Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Biochemistry and Cell Biology
    139 rdf:type schema:DefinedTerm
    140 sg:journal.1018957 schema:issn 0028-0836
    141 1476-4687
    142 schema:name Nature
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.01020436446.27 schema:affiliation grid-institutes:grid.225279.9
    146 schema:familyName Futcher
    147 schema:givenName A. Bruce
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020436446.27
    149 rdf:type schema:Person
    150 sg:person.01317151702.26 schema:affiliation grid-institutes:grid.25073.33
    151 schema:familyName Harley
    152 schema:givenName Calvin B.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317151702.26
    154 rdf:type schema:Person
    155 sg:person.0703533536.40 schema:affiliation grid-institutes:grid.225279.9
    156 schema:familyName Greider
    157 schema:givenName Carol W.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703533536.40
    159 rdf:type schema:Person
    160 sg:pub.10.1007/bf00280554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009328703
    161 https://doi.org/10.1007/bf00280554
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/303592a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021825281
    164 https://doi.org/10.1038/303592a0
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/310154a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018735391
    167 https://doi.org/10.1038/310154a0
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/337331a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037795478
    170 https://doi.org/10.1038/337331a0
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/338771a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053509641
    173 https://doi.org/10.1038/338771a0
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/newbio239197a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040598160
    176 https://doi.org/10.1038/newbio239197a0
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1385/0-89603-150-0:25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026725543
    179 https://doi.org/10.1385/0-89603-150-0:25
    180 rdf:type schema:CreativeWork
    181 grid-institutes:grid.225279.9 schema:alternateName Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, New York, USA
    182 schema:name Cold Spring Harbor Laboratory, 11724, Cold Spring Harbor, New York, USA
    183 rdf:type schema:Organization
    184 grid-institutes:grid.25073.33 schema:alternateName Department of Biochemistry, McMaster University, 1200 Main Street West, L8N 3Z5, Hamilton, Ontario, Canada
    185 schema:name Department of Biochemistry, McMaster University, 1200 Main Street West, L8N 3Z5, Hamilton, Ontario, Canada
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...