Natural variability of the climate system and detection of the greenhouse effect View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-03

AUTHORS

T. M. L. Wigley, S. C. B. Raper

ABSTRACT

GLOBAL mean temperatures show considerable variability on all timescales. The causes of this variability are usually classified as external or internal1, and the variations themselves may be usefully subdivided into low-frequency variability (timescale ≳= 10 years) and high-frequency variability (≲=10 years). Virtually nothing is known about the nature or magnitude of internally generated, low-frequency variability. There is some evidence from models, however, that this variability may be quite large1,2, possibly causing fluctuations in global mean temperature of up to 0.4 °C over periods of thirty years or more (see ref. 2, Fig. 1). Here we show how the ocean may produce low-frequency climate variability by passive modulation of natural forcing, to produce substantial trends in global mean temperature on the century timescale. Simulations with a simple climate model are used to determine the main controls on internally generated low-frequency variability, and show that natural trends of up to 0.3 °C may occur over intervals of up to 100 years. Although the magnitude of such trends is unexpectedly large, it is insufficient to explain the observed global warming during the twentieth century. More... »

PAGES

324-327

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6264

VOLUME

344

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/344324a0

DOI

http://dx.doi.org/10.1038/344324a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000092146


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Wigley", 
        "givenName": "T. M. L.", 
        "id": "sg:person.016171504677.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171504677.21"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Raper", 
        "givenName": "S. C. B.", 
        "id": "sg:person.01135047257.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135047257.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/jd090id01p02191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005996731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330365a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011099354", 
          "https://doi.org/10.1038/330365a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015205444", 
          "https://doi.org/10.1007/bf00139431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015205444", 
          "https://doi.org/10.1007/bf00139431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1987)115<2161:aeotts>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015482762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330127a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016835893", 
          "https://doi.org/10.1038/330127a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1978)035<1111:iaeccc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021463606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd092id03p02991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027286934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/310038a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027389967", 
          "https://doi.org/10.1038/310038a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292205a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031374754", 
          "https://doi.org/10.1038/292205a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292205a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031374754", 
          "https://doi.org/10.1038/292205a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/322430a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032895113", 
          "https://doi.org/10.1038/322430a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd093id08p09341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/311740a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043020322", 
          "https://doi.org/10.1038/311740a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/315649a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046634230", 
          "https://doi.org/10.1038/315649a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01277045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050885849", 
          "https://doi.org/10.1007/bf01277045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01277045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050885849", 
          "https://doi.org/10.1007/bf01277045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.243.4887.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062537203"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-03", 
    "datePublishedReg": "1990-03-01", 
    "description": "GLOBAL mean temperatures show considerable variability on all timescales. The causes of this variability are usually classified as external or internal1, and the variations themselves may be usefully subdivided into low-frequency variability (timescale \u2273= 10 years) and high-frequency variability (\u2272=10 years). Virtually nothing is known about the nature or magnitude of internally generated, low-frequency variability. There is some evidence from models, however, that this variability may be quite large1,2, possibly causing fluctuations in global mean temperature of up to 0.4 \u00b0C over periods of thirty years or more (see ref. 2, Fig. 1). Here we show how the ocean may produce low-frequency climate variability by passive modulation of natural forcing, to produce substantial trends in global mean temperature on the century timescale. Simulations with a simple climate model are used to determine the main controls on internally generated low-frequency variability, and show that natural trends of up to 0.3 \u00b0C may occur over intervals of up to 100 years. Although the magnitude of such trends is unexpectedly large, it is insufficient to explain the observed global warming during the twentieth century.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/344324a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6264", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "344"
      }
    ], 
    "name": "Natural variability of the climate system and detection of the greenhouse effect", 
    "pagination": "324-327", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0070418c78e4aebb32a031f45a68d0f4d9c0191d1af6fd4e06702399747d89f1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/344324a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000092146"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/344324a0", 
      "https://app.dimensions.ai/details/publication/pub.1000092146"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/344324a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/344324a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/344324a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/344324a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/344324a0'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/344324a0 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Nb5232692ef394fca9127cf862fa02469
4 schema:citation sg:pub.10.1007/bf00139431
5 sg:pub.10.1007/bf01277045
6 sg:pub.10.1038/292205a0
7 sg:pub.10.1038/310038a0
8 sg:pub.10.1038/311740a0
9 sg:pub.10.1038/315649a0
10 sg:pub.10.1038/322430a0
11 sg:pub.10.1038/330127a0
12 sg:pub.10.1038/330365a0
13 https://doi.org/10.1029/jd090id01p02191
14 https://doi.org/10.1029/jd092id03p02991
15 https://doi.org/10.1029/jd093id08p09341
16 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
17 https://doi.org/10.1126/science.243.4887.57
18 https://doi.org/10.1175/1520-0469(1978)035<1111:iaeccc>2.0.co;2
19 https://doi.org/10.1175/1520-0493(1987)115<2161:aeotts>2.0.co;2
20 schema:datePublished 1990-03
21 schema:datePublishedReg 1990-03-01
22 schema:description GLOBAL mean temperatures show considerable variability on all timescales. The causes of this variability are usually classified as external or internal1, and the variations themselves may be usefully subdivided into low-frequency variability (timescale ≳= 10 years) and high-frequency variability (≲=10 years). Virtually nothing is known about the nature or magnitude of internally generated, low-frequency variability. There is some evidence from models, however, that this variability may be quite large1,2, possibly causing fluctuations in global mean temperature of up to 0.4 °C over periods of thirty years or more (see ref. 2, Fig. 1). Here we show how the ocean may produce low-frequency climate variability by passive modulation of natural forcing, to produce substantial trends in global mean temperature on the century timescale. Simulations with a simple climate model are used to determine the main controls on internally generated low-frequency variability, and show that natural trends of up to 0.3 °C may occur over intervals of up to 100 years. Although the magnitude of such trends is unexpectedly large, it is insufficient to explain the observed global warming during the twentieth century.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N50f8c13308214348aec2cc06f90d4d8c
27 N8326867e950e4d479500aec78e6ef878
28 sg:journal.1018957
29 schema:name Natural variability of the climate system and detection of the greenhouse effect
30 schema:pagination 324-327
31 schema:productId N1b4ec30f353f41f3821249765fe8ebe0
32 N37cce82fab784d4fad20cba1cc5dad02
33 N6c2d73ba3e2b4f4c82499307fabc3be0
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092146
35 https://doi.org/10.1038/344324a0
36 schema:sdDatePublished 2019-04-10T21:24
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N4d55b950cf3a4b02b7db9be7767eaa97
39 schema:url http://www.nature.com/articles/344324a0
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1b4ec30f353f41f3821249765fe8ebe0 schema:name readcube_id
44 schema:value 0070418c78e4aebb32a031f45a68d0f4d9c0191d1af6fd4e06702399747d89f1
45 rdf:type schema:PropertyValue
46 N37cce82fab784d4fad20cba1cc5dad02 schema:name dimensions_id
47 schema:value pub.1000092146
48 rdf:type schema:PropertyValue
49 N4d55b950cf3a4b02b7db9be7767eaa97 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N50f8c13308214348aec2cc06f90d4d8c schema:issueNumber 6264
52 rdf:type schema:PublicationIssue
53 N6c2d73ba3e2b4f4c82499307fabc3be0 schema:name doi
54 schema:value 10.1038/344324a0
55 rdf:type schema:PropertyValue
56 N8326867e950e4d479500aec78e6ef878 schema:volumeNumber 344
57 rdf:type schema:PublicationVolume
58 Nb5232692ef394fca9127cf862fa02469 rdf:first sg:person.016171504677.21
59 rdf:rest Nc069f56e56b54c70b62dca89229e0ac8
60 Nc069f56e56b54c70b62dca89229e0ac8 rdf:first sg:person.01135047257.42
61 rdf:rest rdf:nil
62 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
63 schema:name Earth Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
66 schema:name Oceanography
67 rdf:type schema:DefinedTerm
68 sg:journal.1018957 schema:issn 0090-0028
69 1476-4687
70 schema:name Nature
71 rdf:type schema:Periodical
72 sg:person.01135047257.42 schema:familyName Raper
73 schema:givenName S. C. B.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135047257.42
75 rdf:type schema:Person
76 sg:person.016171504677.21 schema:familyName Wigley
77 schema:givenName T. M. L.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171504677.21
79 rdf:type schema:Person
80 sg:pub.10.1007/bf00139431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015205444
81 https://doi.org/10.1007/bf00139431
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01277045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050885849
84 https://doi.org/10.1007/bf01277045
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/292205a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031374754
87 https://doi.org/10.1038/292205a0
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/310038a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027389967
90 https://doi.org/10.1038/310038a0
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/311740a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043020322
93 https://doi.org/10.1038/311740a0
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/315649a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046634230
96 https://doi.org/10.1038/315649a0
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/322430a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032895113
99 https://doi.org/10.1038/322430a0
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/330127a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016835893
102 https://doi.org/10.1038/330127a0
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/330365a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011099354
105 https://doi.org/10.1038/330365a0
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1029/jd090id01p02191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005996731
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1029/jd092id03p02991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027286934
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1029/jd093id08p09341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039346451
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010935631
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1126/science.243.4887.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062537203
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1175/1520-0469(1978)035<1111:iaeccc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021463606
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1175/1520-0493(1987)115<2161:aeotts>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015482762
120 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...