Natural variability of the climate system and detection of the greenhouse effect View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-03

AUTHORS

T. M. L. Wigley, S. C. B. Raper

ABSTRACT

GLOBAL mean temperatures show considerable variability on all timescales. The causes of this variability are usually classified as external or internal1, and the variations themselves may be usefully subdivided into low-frequency variability (timescale ≳= 10 years) and high-frequency variability (≲=10 years). Virtually nothing is known about the nature or magnitude of internally generated, low-frequency variability. There is some evidence from models, however, that this variability may be quite large1,2, possibly causing fluctuations in global mean temperature of up to 0.4 °C over periods of thirty years or more (see ref. 2, Fig. 1). Here we show how the ocean may produce low-frequency climate variability by passive modulation of natural forcing, to produce substantial trends in global mean temperature on the century timescale. Simulations with a simple climate model are used to determine the main controls on internally generated low-frequency variability, and show that natural trends of up to 0.3 °C may occur over intervals of up to 100 years. Although the magnitude of such trends is unexpectedly large, it is insufficient to explain the observed global warming during the twentieth century. More... »

PAGES

324-327

Journal

TITLE

Nature

ISSUE

6264

VOLUME

344

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/344324a0

DOI

http://dx.doi.org/10.1038/344324a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000092146


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Wigley", 
        "givenName": "T. M. L.", 
        "id": "sg:person.016171504677.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171504677.21"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Raper", 
        "givenName": "S. C. B.", 
        "id": "sg:person.01135047257.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135047257.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/jd090id01p02191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005996731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330365a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011099354", 
          "https://doi.org/10.1038/330365a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015205444", 
          "https://doi.org/10.1007/bf00139431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015205444", 
          "https://doi.org/10.1007/bf00139431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1987)115<2161:aeotts>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015482762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330127a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016835893", 
          "https://doi.org/10.1038/330127a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1978)035<1111:iaeccc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021463606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd092id03p02991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027286934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/310038a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027389967", 
          "https://doi.org/10.1038/310038a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292205a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031374754", 
          "https://doi.org/10.1038/292205a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292205a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031374754", 
          "https://doi.org/10.1038/292205a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/322430a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032895113", 
          "https://doi.org/10.1038/322430a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd093id08p09341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/311740a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043020322", 
          "https://doi.org/10.1038/311740a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/315649a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046634230", 
          "https://doi.org/10.1038/315649a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01277045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050885849", 
          "https://doi.org/10.1007/bf01277045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01277045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050885849", 
          "https://doi.org/10.1007/bf01277045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.243.4887.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062537203"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-03", 
    "datePublishedReg": "1990-03-01", 
    "description": "GLOBAL mean temperatures show considerable variability on all timescales. The causes of this variability are usually classified as external or internal1, and the variations themselves may be usefully subdivided into low-frequency variability (timescale \u2273= 10 years) and high-frequency variability (\u2272=10 years). Virtually nothing is known about the nature or magnitude of internally generated, low-frequency variability. There is some evidence from models, however, that this variability may be quite large1,2, possibly causing fluctuations in global mean temperature of up to 0.4 \u00b0C over periods of thirty years or more (see ref. 2, Fig. 1). Here we show how the ocean may produce low-frequency climate variability by passive modulation of natural forcing, to produce substantial trends in global mean temperature on the century timescale. Simulations with a simple climate model are used to determine the main controls on internally generated low-frequency variability, and show that natural trends of up to 0.3 \u00b0C may occur over intervals of up to 100 years. Although the magnitude of such trends is unexpectedly large, it is insufficient to explain the observed global warming during the twentieth century.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/344324a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6264", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "344"
      }
    ], 
    "name": "Natural variability of the climate system and detection of the greenhouse effect", 
    "pagination": "324-327", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0070418c78e4aebb32a031f45a68d0f4d9c0191d1af6fd4e06702399747d89f1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/344324a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000092146"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/344324a0", 
      "https://app.dimensions.ai/details/publication/pub.1000092146"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/344324a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/344324a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/344324a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/344324a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/344324a0'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/344324a0 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N2c4660310caa48c2a4ea2551e8ae6fe3
4 schema:citation sg:pub.10.1007/bf00139431
5 sg:pub.10.1007/bf01277045
6 sg:pub.10.1038/292205a0
7 sg:pub.10.1038/310038a0
8 sg:pub.10.1038/311740a0
9 sg:pub.10.1038/315649a0
10 sg:pub.10.1038/322430a0
11 sg:pub.10.1038/330127a0
12 sg:pub.10.1038/330365a0
13 https://doi.org/10.1029/jd090id01p02191
14 https://doi.org/10.1029/jd092id03p02991
15 https://doi.org/10.1029/jd093id08p09341
16 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
17 https://doi.org/10.1126/science.243.4887.57
18 https://doi.org/10.1175/1520-0469(1978)035<1111:iaeccc>2.0.co;2
19 https://doi.org/10.1175/1520-0493(1987)115<2161:aeotts>2.0.co;2
20 schema:datePublished 1990-03
21 schema:datePublishedReg 1990-03-01
22 schema:description GLOBAL mean temperatures show considerable variability on all timescales. The causes of this variability are usually classified as external or internal1, and the variations themselves may be usefully subdivided into low-frequency variability (timescale ≳= 10 years) and high-frequency variability (≲=10 years). Virtually nothing is known about the nature or magnitude of internally generated, low-frequency variability. There is some evidence from models, however, that this variability may be quite large1,2, possibly causing fluctuations in global mean temperature of up to 0.4 °C over periods of thirty years or more (see ref. 2, Fig. 1). Here we show how the ocean may produce low-frequency climate variability by passive modulation of natural forcing, to produce substantial trends in global mean temperature on the century timescale. Simulations with a simple climate model are used to determine the main controls on internally generated low-frequency variability, and show that natural trends of up to 0.3 °C may occur over intervals of up to 100 years. Although the magnitude of such trends is unexpectedly large, it is insufficient to explain the observed global warming during the twentieth century.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N301df4072b84499fb0043a78fadccd32
27 Nbe200b682f36401ca59eee7f0ea2f994
28 sg:journal.1018957
29 schema:name Natural variability of the climate system and detection of the greenhouse effect
30 schema:pagination 324-327
31 schema:productId N5545ae194eb9490c948e1379222007d3
32 N8d223a0213124ac7960ac987fe8f51f7
33 Nb54a7109e1ec47a6841e628bb8cb6184
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092146
35 https://doi.org/10.1038/344324a0
36 schema:sdDatePublished 2019-04-10T21:24
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ncca05d320c504d60a120121f68663b7a
39 schema:url http://www.nature.com/articles/344324a0
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N2c4660310caa48c2a4ea2551e8ae6fe3 rdf:first sg:person.016171504677.21
44 rdf:rest Naf77562328da4f988640cadc7bdde139
45 N301df4072b84499fb0043a78fadccd32 schema:issueNumber 6264
46 rdf:type schema:PublicationIssue
47 N5545ae194eb9490c948e1379222007d3 schema:name dimensions_id
48 schema:value pub.1000092146
49 rdf:type schema:PropertyValue
50 N8d223a0213124ac7960ac987fe8f51f7 schema:name readcube_id
51 schema:value 0070418c78e4aebb32a031f45a68d0f4d9c0191d1af6fd4e06702399747d89f1
52 rdf:type schema:PropertyValue
53 Naf77562328da4f988640cadc7bdde139 rdf:first sg:person.01135047257.42
54 rdf:rest rdf:nil
55 Nb54a7109e1ec47a6841e628bb8cb6184 schema:name doi
56 schema:value 10.1038/344324a0
57 rdf:type schema:PropertyValue
58 Nbe200b682f36401ca59eee7f0ea2f994 schema:volumeNumber 344
59 rdf:type schema:PublicationVolume
60 Ncca05d320c504d60a120121f68663b7a schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
63 schema:name Earth Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
66 schema:name Oceanography
67 rdf:type schema:DefinedTerm
68 sg:journal.1018957 schema:issn 0090-0028
69 1476-4687
70 schema:name Nature
71 rdf:type schema:Periodical
72 sg:person.01135047257.42 schema:familyName Raper
73 schema:givenName S. C. B.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135047257.42
75 rdf:type schema:Person
76 sg:person.016171504677.21 schema:familyName Wigley
77 schema:givenName T. M. L.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171504677.21
79 rdf:type schema:Person
80 sg:pub.10.1007/bf00139431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015205444
81 https://doi.org/10.1007/bf00139431
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01277045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050885849
84 https://doi.org/10.1007/bf01277045
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/292205a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031374754
87 https://doi.org/10.1038/292205a0
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/310038a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027389967
90 https://doi.org/10.1038/310038a0
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/311740a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043020322
93 https://doi.org/10.1038/311740a0
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/315649a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046634230
96 https://doi.org/10.1038/315649a0
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/322430a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032895113
99 https://doi.org/10.1038/322430a0
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/330127a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016835893
102 https://doi.org/10.1038/330127a0
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/330365a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011099354
105 https://doi.org/10.1038/330365a0
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1029/jd090id01p02191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005996731
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1029/jd092id03p02991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027286934
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1029/jd093id08p09341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039346451
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010935631
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1126/science.243.4887.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062537203
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1175/1520-0469(1978)035<1111:iaeccc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021463606
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1175/1520-0493(1987)115<2161:aeotts>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015482762
120 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...