Kondo effect in a single-electron transistor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-01

AUTHORS

D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu, David Abusch-Magder, U. Meirav, M. A. Kastner

ABSTRACT

How localized electrons interact with delocalized electrons is a central question to many problems in sold-state physics1,2,3. The simplest manifestation of this situation is the Kondo effect, which occurs when an impurity atom with an unpaired electron is placed in a metal2. At low temperatures a spin singlet state is formed between the unpaired localized electron and delocalized electrons at the Fermi energy. Theories predict4,5,6,7 that a Kondo singlet should form in a single-electron transistor (SET), which contains a confined ‘droplet’ of electrons coupled by quantum-mechanical tunnelling to the delocalized electrons in the transistor's leads. If this is so, a SET could provide a means of investigating aspects of the Kondo effect under controlled circumstances that are not accessible in conventional systems: the number of electrons can be changed from odd to even, the difference in energy between the localized state and the Fermi level can be tuned, the coupling to the leads can be adjusted, voltage differences can be applied to reveal non-equilibrium Kondo phenomena7, and a single localized state can be studied rather than a statistical distribution. But for SETs fabricated previously, the binding energy of the spin singlet has been too small to observe Kondo phenomena. Ralph and Buhrman8 have observed the Kondo singlet at a single accidental impurity in a metal point contact, but with only two electrodes and without control over the structure they were not able to observe all of the features predicted. Here we report measurements on SETs smaller than those made previously, which exhibit all of the predicted aspects of the Kondo effect in such a system. More... »

PAGES

156

References to SciGraph publications

  • 1996-02. Electrons in artificial atoms in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/34373

    DOI

    http://dx.doi.org/10.1038/34373

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002698314


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Weizmann Institute of Science", 
              "id": "https://www.grid.ac/institutes/grid.13992.30", 
              "name": [
                "*Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139, USA", 
                "\u2020Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goldhaber-Gordon", 
            "givenName": "D.", 
            "id": "sg:person.01077405550.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077405550.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Weizmann Institute of Science", 
              "id": "https://www.grid.ac/institutes/grid.13992.30", 
              "name": [
                "\u2020Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shtrikman", 
            "givenName": "Hadas", 
            "id": "sg:person.01311640117.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311640117.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Weizmann Institute of Science", 
              "id": "https://www.grid.ac/institutes/grid.13992.30", 
              "name": [
                "\u2020Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mahalu", 
            "givenName": "D.", 
            "id": "sg:person.01026312301.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026312301.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "*Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abusch-Magder", 
            "givenName": "David", 
            "id": "sg:person.011532410115.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011532410115.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Weizmann Institute of Science", 
              "id": "https://www.grid.ac/institutes/grid.13992.30", 
              "name": [
                "\u2020Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meirav", 
            "givenName": "U.", 
            "id": "sg:person.010065167475.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010065167475.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "*Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kastner", 
            "givenName": "M. A.", 
            "id": "sg:person.011522436652.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522436652.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/0034-4885/37/12/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001206181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.16820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004730445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.16820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004730445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.51.14782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015738166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.51.14782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015738166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379413a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023449542", 
              "https://doi.org/10.1038/379413a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0268-1242/10/3/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030473249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.49.11040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040941853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.49.11040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040941853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.2601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045748931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.2601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045748931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.881393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058126890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3719/21/8/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058965237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.38.5453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060547681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.38.5453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060547681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.14193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060572905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.14193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060572905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.60.848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.60.848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.1768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.1768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.65.771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060801952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.65.771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060801952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.3720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.3720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.1592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.1592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.4019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060808174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.4019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060808174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.3401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060809086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.3401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060809086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.48.219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.48.219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838822"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-01", 
        "datePublishedReg": "1998-01-01", 
        "description": "How localized electrons interact with delocalized electrons is a central question to many problems in sold-state physics1,2,3. The simplest manifestation of this situation is the Kondo effect, which occurs when an impurity atom with an unpaired electron is placed in a metal2. At low temperatures a spin singlet state is formed between the unpaired localized electron and delocalized electrons at the Fermi energy. Theories predict4,5,6,7 that a Kondo singlet should form in a single-electron transistor (SET), which contains a confined \u2018droplet\u2019 of electrons coupled by quantum-mechanical tunnelling to the delocalized electrons in the transistor's leads. If this is so, a SET could provide a means of investigating aspects of the Kondo effect under controlled circumstances that are not accessible in conventional systems: the number of electrons can be changed from odd to even, the difference in energy between the localized state and the Fermi level can be tuned, the coupling to the leads can be adjusted, voltage differences can be applied to reveal non-equilibrium Kondo phenomena7, and a single localized state can be studied rather than a statistical distribution. But for SETs fabricated previously, the binding energy of the spin singlet has been too small to observe Kondo phenomena. Ralph and Buhrman8 have observed the Kondo singlet at a single accidental impurity in a metal point contact, but with only two electrodes and without control over the structure they were not able to observe all of the features predicted. Here we report measurements on SETs smaller than those made previously, which exhibit all of the predicted aspects of the Kondo effect in such a system.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/34373", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6663", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "391"
          }
        ], 
        "name": "Kondo effect in a single-electron transistor", 
        "pagination": "156", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0cd8dafd5a95972d89688069235b80e865837cd78187f07fbc2d24978a4e0976"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/34373"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002698314"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/34373", 
          "https://app.dimensions.ai/details/publication/pub.1002698314"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54011_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/34373"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/34373'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/34373'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/34373'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/34373'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/34373 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Nd26a6fd1a58944e8bc1f1dbf2cb1bbda
    4 schema:citation sg:pub.10.1038/379413a0
    5 https://doi.org/10.1063/1.881393
    6 https://doi.org/10.1088/0022-3719/21/8/002
    7 https://doi.org/10.1088/0034-4885/37/12/001
    8 https://doi.org/10.1088/0268-1242/10/3/004
    9 https://doi.org/10.1103/physrevb.38.5453
    10 https://doi.org/10.1103/physrevb.49.11040
    11 https://doi.org/10.1103/physrevb.50.14193
    12 https://doi.org/10.1103/physrevb.51.14782
    13 https://doi.org/10.1103/physrevb.54.16820
    14 https://doi.org/10.1103/physrevlett.59.109
    15 https://doi.org/10.1103/physrevlett.60.848
    16 https://doi.org/10.1103/physrevlett.61.1768
    17 https://doi.org/10.1103/physrevlett.65.771
    18 https://doi.org/10.1103/physrevlett.67.3720
    19 https://doi.org/10.1103/physrevlett.69.1592
    20 https://doi.org/10.1103/physrevlett.70.2601
    21 https://doi.org/10.1103/physrevlett.71.4019
    22 https://doi.org/10.1103/physrevlett.72.3401
    23 https://doi.org/10.1103/revmodphys.48.219
    24 schema:datePublished 1998-01
    25 schema:datePublishedReg 1998-01-01
    26 schema:description How localized electrons interact with delocalized electrons is a central question to many problems in sold-state physics1,2,3. The simplest manifestation of this situation is the Kondo effect, which occurs when an impurity atom with an unpaired electron is placed in a metal2. At low temperatures a spin singlet state is formed between the unpaired localized electron and delocalized electrons at the Fermi energy. Theories predict4,5,6,7 that a Kondo singlet should form in a single-electron transistor (SET), which contains a confined ‘droplet’ of electrons coupled by quantum-mechanical tunnelling to the delocalized electrons in the transistor's leads. If this is so, a SET could provide a means of investigating aspects of the Kondo effect under controlled circumstances that are not accessible in conventional systems: the number of electrons can be changed from odd to even, the difference in energy between the localized state and the Fermi level can be tuned, the coupling to the leads can be adjusted, voltage differences can be applied to reveal non-equilibrium Kondo phenomena7, and a single localized state can be studied rather than a statistical distribution. But for SETs fabricated previously, the binding energy of the spin singlet has been too small to observe Kondo phenomena. Ralph and Buhrman8 have observed the Kondo singlet at a single accidental impurity in a metal point contact, but with only two electrodes and without control over the structure they were not able to observe all of the features predicted. Here we report measurements on SETs smaller than those made previously, which exhibit all of the predicted aspects of the Kondo effect in such a system.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N020b6d1577784d43970591bbbda95f72
    31 N21676769d0784500b40a47b1380d5c3f
    32 sg:journal.1018957
    33 schema:name Kondo effect in a single-electron transistor
    34 schema:pagination 156
    35 schema:productId N507b992908614b7b9dd0bde847bccc1e
    36 N58d48455edc84bf1b70887498b4fee9b
    37 Ne44b449ed8414e3fb892af4c105f4d70
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698314
    39 https://doi.org/10.1038/34373
    40 schema:sdDatePublished 2019-04-11T12:14
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher Nc5917ea3fe24471a9fd1af44a41b458a
    43 schema:url https://www.nature.com/articles/34373
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N020b6d1577784d43970591bbbda95f72 schema:volumeNumber 391
    48 rdf:type schema:PublicationVolume
    49 N068afb490f2e44a7b85f91678e4d0b31 rdf:first sg:person.010065167475.15
    50 rdf:rest Nef35265cd765448fb99344e0fc286d3a
    51 N21676769d0784500b40a47b1380d5c3f schema:issueNumber 6663
    52 rdf:type schema:PublicationIssue
    53 N507b992908614b7b9dd0bde847bccc1e schema:name dimensions_id
    54 schema:value pub.1002698314
    55 rdf:type schema:PropertyValue
    56 N58d48455edc84bf1b70887498b4fee9b schema:name readcube_id
    57 schema:value 0cd8dafd5a95972d89688069235b80e865837cd78187f07fbc2d24978a4e0976
    58 rdf:type schema:PropertyValue
    59 N74a73bc82f8d48d2be901d8399f67a91 rdf:first sg:person.01311640117.70
    60 rdf:rest Na296264672a443fb9c1080e1bdc33bff
    61 Na296264672a443fb9c1080e1bdc33bff rdf:first sg:person.01026312301.06
    62 rdf:rest Nf1c6bec8922e4c17b1ba7cf2c53691bd
    63 Nc5917ea3fe24471a9fd1af44a41b458a schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Nd26a6fd1a58944e8bc1f1dbf2cb1bbda rdf:first sg:person.01077405550.04
    66 rdf:rest N74a73bc82f8d48d2be901d8399f67a91
    67 Ne44b449ed8414e3fb892af4c105f4d70 schema:name doi
    68 schema:value 10.1038/34373
    69 rdf:type schema:PropertyValue
    70 Nef35265cd765448fb99344e0fc286d3a rdf:first sg:person.011522436652.55
    71 rdf:rest rdf:nil
    72 Nf1c6bec8922e4c17b1ba7cf2c53691bd rdf:first sg:person.011532410115.45
    73 rdf:rest N068afb490f2e44a7b85f91678e4d0b31
    74 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Physical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1018957 schema:issn 0090-0028
    81 1476-4687
    82 schema:name Nature
    83 rdf:type schema:Periodical
    84 sg:person.010065167475.15 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
    85 schema:familyName Meirav
    86 schema:givenName U.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010065167475.15
    88 rdf:type schema:Person
    89 sg:person.01026312301.06 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
    90 schema:familyName Mahalu
    91 schema:givenName D.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026312301.06
    93 rdf:type schema:Person
    94 sg:person.01077405550.04 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
    95 schema:familyName Goldhaber-Gordon
    96 schema:givenName D.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077405550.04
    98 rdf:type schema:Person
    99 sg:person.011522436652.55 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    100 schema:familyName Kastner
    101 schema:givenName M. A.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522436652.55
    103 rdf:type schema:Person
    104 sg:person.011532410115.45 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    105 schema:familyName Abusch-Magder
    106 schema:givenName David
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011532410115.45
    108 rdf:type schema:Person
    109 sg:person.01311640117.70 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
    110 schema:familyName Shtrikman
    111 schema:givenName Hadas
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311640117.70
    113 rdf:type schema:Person
    114 sg:pub.10.1038/379413a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023449542
    115 https://doi.org/10.1038/379413a0
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1063/1.881393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058126890
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1088/0022-3719/21/8/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058965237
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1088/0034-4885/37/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001206181
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1088/0268-1242/10/3/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030473249
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevb.38.5453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060547681
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevb.49.11040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040941853
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevb.50.14193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572905
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevb.51.14782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015738166
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevb.54.16820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004730445
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevlett.59.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795495
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevlett.60.848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797407
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevlett.61.1768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797714
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevlett.65.771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801952
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevlett.67.3720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803787
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevlett.69.1592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805267
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevlett.70.2601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045748931
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevlett.71.4019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808174
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevlett.72.3401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809086
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/revmodphys.48.219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838822
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    156 schema:name *Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139, USA
    157 rdf:type schema:Organization
    158 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
    159 schema:name *Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139, USA
    160 †Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...