Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-11

AUTHORS

I Mellon, P C Hanawalt

ABSTRACT

Nucleotide excision repair helps to ameliorate the lethal and mutagenic consequences of DNA damage by removing helix-distorting lesions from cellular genomes. We have previously analysed the removal of ultraviolet-induced cyclobutane pyrimidine dimers from specific DNA sequences in mammalian cells and demonstrated that transcriptionally active genes are preferentially repaired. Additionally, we found that in rodent and human cells only the transcribed strand of the dihydrofolate reductase gene is selectively repaired. Transcription is blocked by pyrimidine dimers in template DNA and the selective removal of these lesions seems to be important for cell survival after irradiation with ultraviolet light. To determine whether this feature of repair is common to prokaryotes and eukaryotes and better to understand its mechanism, we have investigated repair in the two separate DNA strands of the lactose operon of ultraviolet-irradiated Escherichia coli. We find a dramatic difference in the repair of the two strands only when transcription is induced. Most dimers are removed from the transcribed strand of the induced operon within five minutes of irradiation. In the nontranscribed strand, repair is significantly slower and resembles that found in both strands of the uninduced operon. Thus there seems to be a mechanism that couples nucleotide excision repair and transcription. More... »

PAGES

95-98

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/342095a0

DOI

http://dx.doi.org/10.1038/342095a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043215527

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2554145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Repair", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Transposable Elements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lac Operon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pyrimidine Dimers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Restriction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultraviolet Rays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Biological Sciences, Stanford University, California 94305-5020."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mellon", 
        "givenName": "I", 
        "id": "sg:person.0603334700.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603334700.25"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hanawalt", 
        "givenName": "P C", 
        "id": "sg:person.012373215137.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012373215137.99"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1989-11", 
    "datePublishedReg": "1989-11-01", 
    "description": "Nucleotide excision repair helps to ameliorate the lethal and mutagenic consequences of DNA damage by removing helix-distorting lesions from cellular genomes. We have previously analysed the removal of ultraviolet-induced cyclobutane pyrimidine dimers from specific DNA sequences in mammalian cells and demonstrated that transcriptionally active genes are preferentially repaired. Additionally, we found that in rodent and human cells only the transcribed strand of the dihydrofolate reductase gene is selectively repaired. Transcription is blocked by pyrimidine dimers in template DNA and the selective removal of these lesions seems to be important for cell survival after irradiation with ultraviolet light. To determine whether this feature of repair is common to prokaryotes and eukaryotes and better to understand its mechanism, we have investigated repair in the two separate DNA strands of the lactose operon of ultraviolet-irradiated Escherichia coli. We find a dramatic difference in the repair of the two strands only when transcription is induced. Most dimers are removed from the transcribed strand of the induced operon within five minutes of irradiation. In the nontranscribed strand, repair is significantly slower and resembles that found in both strands of the uninduced operon. Thus there seems to be a mechanism that couples nucleotide excision repair and transcription.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/342095a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6245", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "342"
      }
    ], 
    "name": "Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand", 
    "pagination": "95-98", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cdd9ae08afa806a33dabb16046a80c85099451587149d930013632b6f1df1734"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2554145"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/342095a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043215527"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/342095a0", 
      "https://app.dimensions.ai/details/publication/pub.1043215527"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nature/journal/v342/n6245/full/342095a0.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/342095a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/342095a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/342095a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/342095a0'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      20 PREDICATES      38 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/342095a0 schema:about N0aa12cd56b0544f0add445bf49b94b08
2 N1e3456a644c2473684ac503fbd3e5490
3 N2baadf0a8bec49c38ac3ab13fecfd203
4 N3b4eef385bb84036afc00bd0bb9e342c
5 N6a6a285be89b41a0953f12720c7924b8
6 N73d76b7597a744e3885dbdfcded6043d
7 N912e96bed4d64935899a784d5cd8f2a6
8 Nc091e24c28574e26a377098a6059bd0b
9 Ne25d281e388b43cfa90d550ccda44271
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author N2f2683f926df4b10a7ea06bc7038275d
13 schema:datePublished 1989-11
14 schema:datePublishedReg 1989-11-01
15 schema:description Nucleotide excision repair helps to ameliorate the lethal and mutagenic consequences of DNA damage by removing helix-distorting lesions from cellular genomes. We have previously analysed the removal of ultraviolet-induced cyclobutane pyrimidine dimers from specific DNA sequences in mammalian cells and demonstrated that transcriptionally active genes are preferentially repaired. Additionally, we found that in rodent and human cells only the transcribed strand of the dihydrofolate reductase gene is selectively repaired. Transcription is blocked by pyrimidine dimers in template DNA and the selective removal of these lesions seems to be important for cell survival after irradiation with ultraviolet light. To determine whether this feature of repair is common to prokaryotes and eukaryotes and better to understand its mechanism, we have investigated repair in the two separate DNA strands of the lactose operon of ultraviolet-irradiated Escherichia coli. We find a dramatic difference in the repair of the two strands only when transcription is induced. Most dimers are removed from the transcribed strand of the induced operon within five minutes of irradiation. In the nontranscribed strand, repair is significantly slower and resembles that found in both strands of the uninduced operon. Thus there seems to be a mechanism that couples nucleotide excision repair and transcription.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N79052066157b422189df03913a334921
20 N804aa01ff58747d3bc46ce03071e5a9f
21 sg:journal.1018957
22 schema:name Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand
23 schema:pagination 95-98
24 schema:productId N5a7ba0fe490049ea883ed2880818aed6
25 N73fc85dd38534b61b03dc67dc81d4470
26 Na1c2b29ccaf141978f057464d3dc0994
27 Na4b91809227643d1ba4c061fd7461bbf
28 Nd049bd7131f94be6911893106354c744
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043215527
30 https://doi.org/10.1038/342095a0
31 schema:sdDatePublished 2019-04-10T14:48
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N18ffd46534234c9db109296e4d7af990
34 schema:url http://www.nature.com/nature/journal/v342/n6245/full/342095a0.html
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0aa12cd56b0544f0add445bf49b94b08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
39 schema:name DNA Repair
40 rdf:type schema:DefinedTerm
41 N18ffd46534234c9db109296e4d7af990 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N1e3456a644c2473684ac503fbd3e5490 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
44 schema:name Pyrimidine Dimers
45 rdf:type schema:DefinedTerm
46 N2baadf0a8bec49c38ac3ab13fecfd203 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Restriction Mapping
48 rdf:type schema:DefinedTerm
49 N2f2683f926df4b10a7ea06bc7038275d rdf:first sg:person.0603334700.25
50 rdf:rest N4e4d7d94743f4825904df1ab96aa902d
51 N3b4eef385bb84036afc00bd0bb9e342c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Ultraviolet Rays
53 rdf:type schema:DefinedTerm
54 N4e4d7d94743f4825904df1ab96aa902d rdf:first sg:person.012373215137.99
55 rdf:rest rdf:nil
56 N5a7ba0fe490049ea883ed2880818aed6 schema:name readcube_id
57 schema:value cdd9ae08afa806a33dabb16046a80c85099451587149d930013632b6f1df1734
58 rdf:type schema:PropertyValue
59 N6a6a285be89b41a0953f12720c7924b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Escherichia coli
61 rdf:type schema:DefinedTerm
62 N73d76b7597a744e3885dbdfcded6043d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name DNA Transposable Elements
64 rdf:type schema:DefinedTerm
65 N73fc85dd38534b61b03dc67dc81d4470 schema:name dimensions_id
66 schema:value pub.1043215527
67 rdf:type schema:PropertyValue
68 N79052066157b422189df03913a334921 schema:issueNumber 6245
69 rdf:type schema:PublicationIssue
70 N804aa01ff58747d3bc46ce03071e5a9f schema:volumeNumber 342
71 rdf:type schema:PublicationVolume
72 N912e96bed4d64935899a784d5cd8f2a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Genes, Bacterial
74 rdf:type schema:DefinedTerm
75 Na1c2b29ccaf141978f057464d3dc0994 schema:name nlm_unique_id
76 schema:value 0410462
77 rdf:type schema:PropertyValue
78 Na4b91809227643d1ba4c061fd7461bbf schema:name pubmed_id
79 schema:value 2554145
80 rdf:type schema:PropertyValue
81 Nc091e24c28574e26a377098a6059bd0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Lac Operon
83 rdf:type schema:DefinedTerm
84 Nd049bd7131f94be6911893106354c744 schema:name doi
85 schema:value 10.1038/342095a0
86 rdf:type schema:PropertyValue
87 Ne25d281e388b43cfa90d550ccda44271 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Transcription, Genetic
89 rdf:type schema:DefinedTerm
90 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
91 schema:name Biological Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
94 schema:name Biochemistry and Cell Biology
95 rdf:type schema:DefinedTerm
96 sg:journal.1018957 schema:issn 0090-0028
97 1476-4687
98 schema:name Nature
99 rdf:type schema:Periodical
100 sg:person.012373215137.99 schema:familyName Hanawalt
101 schema:givenName P C
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012373215137.99
103 rdf:type schema:Person
104 sg:person.0603334700.25 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
105 schema:familyName Mellon
106 schema:givenName I
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603334700.25
108 rdf:type schema:Person
109 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
110 schema:name Department of Biological Sciences, Stanford University, California 94305-5020.
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...