Energy budget analysis for Poás crater lake: implications for predicting volcanic activity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-06

AUTHORS

Geoff Brown, Hazel Rymer, John Dowden, Phiroze Kapadia, David Stevenson, Jorge Barquero, Louis D. Morales

ABSTRACT

AWORKING model for many active stratovolcanoes involves a magma column with a frozen cap, cooled by a meteoric-water hydrothermal system. Systems with such high latent and specific heat capacities may easily buffer internal temperatures and apparent surface activity during short-term changes in power output. The surface manifestation of volcanic hydrothermal systems takes the form of boiling mud pools, hot springs, fumaroles, and in about 20–30 cases worldwide, hot crater lakes1–7. The latter are rare because they require special conditions to exist: high water supply, confined fumarole discharge, low permeability substratum and effective sub-surface heat transport. Crater lakes at active volcanoes are in a state of dynamic equilibrium whereby annual water losses through evaporation and infiltration are balanced by additions due to, for example, rainfall and runoff. Any change in volcano power output will directly affect the internal energy and surface heat loss of the lake. Vaporization of water within the hydrothermal system, leading to enhanced steam discharge from fumaroles, can also absorb increased power output. For long-term (months to years) power changes, we propose that crater-lake and fumarole discharge variations may well occur before significant signals on seismic and tilt networks are detected. As an illustration of these ideas, we consider here the recent activity at Poas volcano, Costa Rica. More... »

PAGES

370-373

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/339370a0

DOI

http://dx.doi.org/10.1038/339370a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007245787


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Brown", 
        "givenName": "Geoff", 
        "id": "sg:person.012335100416.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335100416.01"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Rymer", 
        "givenName": "Hazel", 
        "id": "sg:person.014007571173.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007571173.63"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Dowden", 
        "givenName": "John", 
        "id": "sg:person.011777172323.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011777172323.10"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kapadia", 
        "givenName": "Phiroze", 
        "id": "sg:person.010374134005.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010374134005.04"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Stevenson", 
        "givenName": "David", 
        "id": "sg:person.01115241310.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115241310.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Barquero", 
        "givenName": "Jorge", 
        "id": "sg:person.012157106045.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157106045.11"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Morales", 
        "givenName": "Louis D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/271344a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005011437", 
          "https://doi.org/10.1038/271344a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01079964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009752333", 
          "https://doi.org/10.1007/bf01079964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01079964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009752333", 
          "https://doi.org/10.1007/bf01079964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(87)90206-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020644220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(87)90206-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020644220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(87)90057-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021193013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(87)90057-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021193013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr009i005p01242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032108576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(84)90061-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034794062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(84)90061-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034794062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01046632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037657047", 
          "https://doi.org/10.1007/bf01046632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(82)90023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040813041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(82)90023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040813041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr010i005p00930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043837229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330470a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045212741", 
          "https://doi.org/10.1038/330470a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/311243a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049624634", 
          "https://doi.org/10.1038/311243a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(81)90005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050803122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(81)90005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050803122"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-06", 
    "datePublishedReg": "1989-06-01", 
    "description": "AWORKING model for many active stratovolcanoes involves a magma column with a frozen cap, cooled by a meteoric-water hydrothermal system. Systems with such high latent and specific heat capacities may easily buffer internal temperatures and apparent surface activity during short-term changes in power output. The surface manifestation of volcanic hydrothermal systems takes the form of boiling mud pools, hot springs, fumaroles, and in about 20\u201330 cases worldwide, hot crater lakes1\u20137. The latter are rare because they require special conditions to exist: high water supply, confined fumarole discharge, low permeability substratum and effective sub-surface heat transport. Crater lakes at active volcanoes are in a state of dynamic equilibrium whereby annual water losses through evaporation and infiltration are balanced by additions due to, for example, rainfall and runoff. Any change in volcano power output will directly affect the internal energy and surface heat loss of the lake. Vaporization of water within the hydrothermal system, leading to enhanced steam discharge from fumaroles, can also absorb increased power output. For long-term (months to years) power changes, we propose that crater-lake and fumarole discharge variations may well occur before significant signals on seismic and tilt networks are detected. As an illustration of these ideas, we consider here the recent activity at Poas volcano, Costa Rica.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/339370a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6223", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "339"
      }
    ], 
    "name": "Energy budget analysis for Po\u00e1s crater lake: implications for predicting volcanic activity", 
    "pagination": "370-373", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2283783d0e83ef6af55ee5a2c9049d6a0121f7e5fb056a584b28ec1881be40d1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/339370a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007245787"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/339370a0", 
      "https://app.dimensions.ai/details/publication/pub.1007245787"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87112_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/339370a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/339370a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/339370a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/339370a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/339370a0'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/339370a0 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N2e361557b1584608afe255e2ddb37703
4 schema:citation sg:pub.10.1007/bf01046632
5 sg:pub.10.1007/bf01079964
6 sg:pub.10.1038/271344a0
7 sg:pub.10.1038/311243a0
8 sg:pub.10.1038/330470a0
9 https://doi.org/10.1016/0012-821x(87)90206-8
10 https://doi.org/10.1016/0377-0273(81)90005-6
11 https://doi.org/10.1016/0377-0273(82)90023-3
12 https://doi.org/10.1016/0377-0273(84)90061-1
13 https://doi.org/10.1016/0377-0273(87)90057-6
14 https://doi.org/10.1029/wr009i005p01242
15 https://doi.org/10.1029/wr010i005p00930
16 schema:datePublished 1989-06
17 schema:datePublishedReg 1989-06-01
18 schema:description AWORKING model for many active stratovolcanoes involves a magma column with a frozen cap, cooled by a meteoric-water hydrothermal system. Systems with such high latent and specific heat capacities may easily buffer internal temperatures and apparent surface activity during short-term changes in power output. The surface manifestation of volcanic hydrothermal systems takes the form of boiling mud pools, hot springs, fumaroles, and in about 20–30 cases worldwide, hot crater lakes1–7. The latter are rare because they require special conditions to exist: high water supply, confined fumarole discharge, low permeability substratum and effective sub-surface heat transport. Crater lakes at active volcanoes are in a state of dynamic equilibrium whereby annual water losses through evaporation and infiltration are balanced by additions due to, for example, rainfall and runoff. Any change in volcano power output will directly affect the internal energy and surface heat loss of the lake. Vaporization of water within the hydrothermal system, leading to enhanced steam discharge from fumaroles, can also absorb increased power output. For long-term (months to years) power changes, we propose that crater-lake and fumarole discharge variations may well occur before significant signals on seismic and tilt networks are detected. As an illustration of these ideas, we consider here the recent activity at Poas volcano, Costa Rica.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N4c9100e65aca4d0088b6be2df64ecb4d
23 N70ebd297970b4aefbf3987a9d7daee99
24 sg:journal.1018957
25 schema:name Energy budget analysis for Poás crater lake: implications for predicting volcanic activity
26 schema:pagination 370-373
27 schema:productId N1856ef7f88f64dcdba322c3e1ffd69f3
28 N3a6341ff392b4e098c4bf3e397d17d4f
29 N8294f60724544c79aa6cee6990f6c82c
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007245787
31 https://doi.org/10.1038/339370a0
32 schema:sdDatePublished 2019-04-11T12:26
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nb62a1bc32dab4d98a74cd65899cfe101
35 schema:url http://www.nature.com/articles/339370a0
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N131ec6a2d1124fd1bfe00b46b8106f07 rdf:first N9afeb7a37eb44c6094428c13dbf9b00c
40 rdf:rest rdf:nil
41 N1856ef7f88f64dcdba322c3e1ffd69f3 schema:name dimensions_id
42 schema:value pub.1007245787
43 rdf:type schema:PropertyValue
44 N2e361557b1584608afe255e2ddb37703 rdf:first sg:person.012335100416.01
45 rdf:rest N7ef265a71b304467b990e0f963de7278
46 N337ef4797c314c0bbd149aebdc53fcfd rdf:first sg:person.01115241310.19
47 rdf:rest N835d689493574853b3d25e18553af6ab
48 N3a6341ff392b4e098c4bf3e397d17d4f schema:name readcube_id
49 schema:value 2283783d0e83ef6af55ee5a2c9049d6a0121f7e5fb056a584b28ec1881be40d1
50 rdf:type schema:PropertyValue
51 N4c9100e65aca4d0088b6be2df64ecb4d schema:issueNumber 6223
52 rdf:type schema:PublicationIssue
53 N70ebd297970b4aefbf3987a9d7daee99 schema:volumeNumber 339
54 rdf:type schema:PublicationVolume
55 N7ef265a71b304467b990e0f963de7278 rdf:first sg:person.014007571173.63
56 rdf:rest N9e67b1c65e6243419561e82baf333209
57 N8294f60724544c79aa6cee6990f6c82c schema:name doi
58 schema:value 10.1038/339370a0
59 rdf:type schema:PropertyValue
60 N835d689493574853b3d25e18553af6ab rdf:first sg:person.012157106045.11
61 rdf:rest N131ec6a2d1124fd1bfe00b46b8106f07
62 N9afeb7a37eb44c6094428c13dbf9b00c schema:familyName Morales
63 schema:givenName Louis D.
64 rdf:type schema:Person
65 N9e67b1c65e6243419561e82baf333209 rdf:first sg:person.011777172323.10
66 rdf:rest Nbee4e2138e514bc2b130cf9e9a0403aa
67 Nb62a1bc32dab4d98a74cd65899cfe101 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nbee4e2138e514bc2b130cf9e9a0403aa rdf:first sg:person.010374134005.04
70 rdf:rest N337ef4797c314c0bbd149aebdc53fcfd
71 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
72 schema:name Earth Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
75 schema:name Physical Geography and Environmental Geoscience
76 rdf:type schema:DefinedTerm
77 sg:journal.1018957 schema:issn 0090-0028
78 1476-4687
79 schema:name Nature
80 rdf:type schema:Periodical
81 sg:person.010374134005.04 schema:familyName Kapadia
82 schema:givenName Phiroze
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010374134005.04
84 rdf:type schema:Person
85 sg:person.01115241310.19 schema:familyName Stevenson
86 schema:givenName David
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115241310.19
88 rdf:type schema:Person
89 sg:person.011777172323.10 schema:familyName Dowden
90 schema:givenName John
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011777172323.10
92 rdf:type schema:Person
93 sg:person.012157106045.11 schema:familyName Barquero
94 schema:givenName Jorge
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157106045.11
96 rdf:type schema:Person
97 sg:person.012335100416.01 schema:familyName Brown
98 schema:givenName Geoff
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335100416.01
100 rdf:type schema:Person
101 sg:person.014007571173.63 schema:familyName Rymer
102 schema:givenName Hazel
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007571173.63
104 rdf:type schema:Person
105 sg:pub.10.1007/bf01046632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037657047
106 https://doi.org/10.1007/bf01046632
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01079964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009752333
109 https://doi.org/10.1007/bf01079964
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/271344a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005011437
112 https://doi.org/10.1038/271344a0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/311243a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624634
115 https://doi.org/10.1038/311243a0
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/330470a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045212741
118 https://doi.org/10.1038/330470a0
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0012-821x(87)90206-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020644220
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0377-0273(81)90005-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050803122
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0377-0273(82)90023-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040813041
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0377-0273(84)90061-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034794062
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0377-0273(87)90057-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021193013
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/wr009i005p01242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032108576
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1029/wr010i005p00930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043837229
133 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...