Energy budget analysis for Poás crater lake: implications for predicting volcanic activity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-06

AUTHORS

Geoff Brown, Hazel Rymer, John Dowden, Phiroze Kapadia, David Stevenson, Jorge Barquero, Louis D. Morales

ABSTRACT

AWORKING model for many active stratovolcanoes involves a magma column with a frozen cap, cooled by a meteoric-water hydrothermal system. Systems with such high latent and specific heat capacities may easily buffer internal temperatures and apparent surface activity during short-term changes in power output. The surface manifestation of volcanic hydrothermal systems takes the form of boiling mud pools, hot springs, fumaroles, and in about 20–30 cases worldwide, hot crater lakes1–7. The latter are rare because they require special conditions to exist: high water supply, confined fumarole discharge, low permeability substratum and effective sub-surface heat transport. Crater lakes at active volcanoes are in a state of dynamic equilibrium whereby annual water losses through evaporation and infiltration are balanced by additions due to, for example, rainfall and runoff. Any change in volcano power output will directly affect the internal energy and surface heat loss of the lake. Vaporization of water within the hydrothermal system, leading to enhanced steam discharge from fumaroles, can also absorb increased power output. For long-term (months to years) power changes, we propose that crater-lake and fumarole discharge variations may well occur before significant signals on seismic and tilt networks are detected. As an illustration of these ideas, we consider here the recent activity at Poas volcano, Costa Rica. More... »

PAGES

370-373

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/339370a0

DOI

http://dx.doi.org/10.1038/339370a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007245787


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Brown", 
        "givenName": "Geoff", 
        "id": "sg:person.012335100416.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335100416.01"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Rymer", 
        "givenName": "Hazel", 
        "id": "sg:person.014007571173.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007571173.63"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Dowden", 
        "givenName": "John", 
        "id": "sg:person.011777172323.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011777172323.10"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kapadia", 
        "givenName": "Phiroze", 
        "id": "sg:person.010374134005.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010374134005.04"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Stevenson", 
        "givenName": "David", 
        "id": "sg:person.01115241310.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115241310.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Barquero", 
        "givenName": "Jorge", 
        "id": "sg:person.012157106045.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157106045.11"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Morales", 
        "givenName": "Louis D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/271344a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005011437", 
          "https://doi.org/10.1038/271344a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01079964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009752333", 
          "https://doi.org/10.1007/bf01079964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01079964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009752333", 
          "https://doi.org/10.1007/bf01079964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(87)90206-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020644220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(87)90206-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020644220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(87)90057-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021193013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(87)90057-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021193013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr009i005p01242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032108576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(84)90061-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034794062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(84)90061-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034794062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01046632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037657047", 
          "https://doi.org/10.1007/bf01046632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(82)90023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040813041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(82)90023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040813041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr010i005p00930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043837229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330470a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045212741", 
          "https://doi.org/10.1038/330470a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/311243a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049624634", 
          "https://doi.org/10.1038/311243a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(81)90005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050803122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(81)90005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050803122"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-06", 
    "datePublishedReg": "1989-06-01", 
    "description": "AWORKING model for many active stratovolcanoes involves a magma column with a frozen cap, cooled by a meteoric-water hydrothermal system. Systems with such high latent and specific heat capacities may easily buffer internal temperatures and apparent surface activity during short-term changes in power output. The surface manifestation of volcanic hydrothermal systems takes the form of boiling mud pools, hot springs, fumaroles, and in about 20\u201330 cases worldwide, hot crater lakes1\u20137. The latter are rare because they require special conditions to exist: high water supply, confined fumarole discharge, low permeability substratum and effective sub-surface heat transport. Crater lakes at active volcanoes are in a state of dynamic equilibrium whereby annual water losses through evaporation and infiltration are balanced by additions due to, for example, rainfall and runoff. Any change in volcano power output will directly affect the internal energy and surface heat loss of the lake. Vaporization of water within the hydrothermal system, leading to enhanced steam discharge from fumaroles, can also absorb increased power output. For long-term (months to years) power changes, we propose that crater-lake and fumarole discharge variations may well occur before significant signals on seismic and tilt networks are detected. As an illustration of these ideas, we consider here the recent activity at Poas volcano, Costa Rica.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/339370a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6223", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "339"
      }
    ], 
    "name": "Energy budget analysis for Po\u00e1s crater lake: implications for predicting volcanic activity", 
    "pagination": "370-373", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2283783d0e83ef6af55ee5a2c9049d6a0121f7e5fb056a584b28ec1881be40d1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/339370a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007245787"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/339370a0", 
      "https://app.dimensions.ai/details/publication/pub.1007245787"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87112_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/339370a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/339370a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/339370a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/339370a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/339370a0'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/339370a0 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nd04cef051ec14501ba9f373d51c00a50
4 schema:citation sg:pub.10.1007/bf01046632
5 sg:pub.10.1007/bf01079964
6 sg:pub.10.1038/271344a0
7 sg:pub.10.1038/311243a0
8 sg:pub.10.1038/330470a0
9 https://doi.org/10.1016/0012-821x(87)90206-8
10 https://doi.org/10.1016/0377-0273(81)90005-6
11 https://doi.org/10.1016/0377-0273(82)90023-3
12 https://doi.org/10.1016/0377-0273(84)90061-1
13 https://doi.org/10.1016/0377-0273(87)90057-6
14 https://doi.org/10.1029/wr009i005p01242
15 https://doi.org/10.1029/wr010i005p00930
16 schema:datePublished 1989-06
17 schema:datePublishedReg 1989-06-01
18 schema:description AWORKING model for many active stratovolcanoes involves a magma column with a frozen cap, cooled by a meteoric-water hydrothermal system. Systems with such high latent and specific heat capacities may easily buffer internal temperatures and apparent surface activity during short-term changes in power output. The surface manifestation of volcanic hydrothermal systems takes the form of boiling mud pools, hot springs, fumaroles, and in about 20–30 cases worldwide, hot crater lakes1–7. The latter are rare because they require special conditions to exist: high water supply, confined fumarole discharge, low permeability substratum and effective sub-surface heat transport. Crater lakes at active volcanoes are in a state of dynamic equilibrium whereby annual water losses through evaporation and infiltration are balanced by additions due to, for example, rainfall and runoff. Any change in volcano power output will directly affect the internal energy and surface heat loss of the lake. Vaporization of water within the hydrothermal system, leading to enhanced steam discharge from fumaroles, can also absorb increased power output. For long-term (months to years) power changes, we propose that crater-lake and fumarole discharge variations may well occur before significant signals on seismic and tilt networks are detected. As an illustration of these ideas, we consider here the recent activity at Poas volcano, Costa Rica.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N6345ba4ff9c34fb194e240be6ed95334
23 Nd502672592474643b58c5107bad4bd3d
24 sg:journal.1018957
25 schema:name Energy budget analysis for Poás crater lake: implications for predicting volcanic activity
26 schema:pagination 370-373
27 schema:productId N1517c038f9684b1f8573cb046dc5500f
28 N32312b528df84a39aaaf1d81f9ba37f0
29 Nca56103185424ffcb7403e2957f83b86
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007245787
31 https://doi.org/10.1038/339370a0
32 schema:sdDatePublished 2019-04-11T12:26
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N47b8549e3a644a66a633dfa6513ee479
35 schema:url http://www.nature.com/articles/339370a0
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1517c038f9684b1f8573cb046dc5500f schema:name readcube_id
40 schema:value 2283783d0e83ef6af55ee5a2c9049d6a0121f7e5fb056a584b28ec1881be40d1
41 rdf:type schema:PropertyValue
42 N32312b528df84a39aaaf1d81f9ba37f0 schema:name doi
43 schema:value 10.1038/339370a0
44 rdf:type schema:PropertyValue
45 N47b8549e3a644a66a633dfa6513ee479 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N4fbd3c550bfe41c9af0575f8b2a08725 rdf:first sg:person.010374134005.04
48 rdf:rest Ne97f364d371144fcacf8a6a26ed42ca0
49 N5e713cf064b64bef81d579f25166f08b rdf:first sg:person.014007571173.63
50 rdf:rest Ne79c67626626404f89b846067d6a6f2d
51 N6345ba4ff9c34fb194e240be6ed95334 schema:volumeNumber 339
52 rdf:type schema:PublicationVolume
53 N864c650a96104de485e64179fd1535d9 schema:familyName Morales
54 schema:givenName Louis D.
55 rdf:type schema:Person
56 N8bdb3242c56243a39715c8b56252a132 rdf:first sg:person.012157106045.11
57 rdf:rest N9c98acee542f40d2b15b6dddb133fc49
58 N9c98acee542f40d2b15b6dddb133fc49 rdf:first N864c650a96104de485e64179fd1535d9
59 rdf:rest rdf:nil
60 Nca56103185424ffcb7403e2957f83b86 schema:name dimensions_id
61 schema:value pub.1007245787
62 rdf:type schema:PropertyValue
63 Nd04cef051ec14501ba9f373d51c00a50 rdf:first sg:person.012335100416.01
64 rdf:rest N5e713cf064b64bef81d579f25166f08b
65 Nd502672592474643b58c5107bad4bd3d schema:issueNumber 6223
66 rdf:type schema:PublicationIssue
67 Ne79c67626626404f89b846067d6a6f2d rdf:first sg:person.011777172323.10
68 rdf:rest N4fbd3c550bfe41c9af0575f8b2a08725
69 Ne97f364d371144fcacf8a6a26ed42ca0 rdf:first sg:person.01115241310.19
70 rdf:rest N8bdb3242c56243a39715c8b56252a132
71 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
72 schema:name Earth Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
75 schema:name Physical Geography and Environmental Geoscience
76 rdf:type schema:DefinedTerm
77 sg:journal.1018957 schema:issn 0090-0028
78 1476-4687
79 schema:name Nature
80 rdf:type schema:Periodical
81 sg:person.010374134005.04 schema:familyName Kapadia
82 schema:givenName Phiroze
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010374134005.04
84 rdf:type schema:Person
85 sg:person.01115241310.19 schema:familyName Stevenson
86 schema:givenName David
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115241310.19
88 rdf:type schema:Person
89 sg:person.011777172323.10 schema:familyName Dowden
90 schema:givenName John
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011777172323.10
92 rdf:type schema:Person
93 sg:person.012157106045.11 schema:familyName Barquero
94 schema:givenName Jorge
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157106045.11
96 rdf:type schema:Person
97 sg:person.012335100416.01 schema:familyName Brown
98 schema:givenName Geoff
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335100416.01
100 rdf:type schema:Person
101 sg:person.014007571173.63 schema:familyName Rymer
102 schema:givenName Hazel
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007571173.63
104 rdf:type schema:Person
105 sg:pub.10.1007/bf01046632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037657047
106 https://doi.org/10.1007/bf01046632
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01079964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009752333
109 https://doi.org/10.1007/bf01079964
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/271344a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005011437
112 https://doi.org/10.1038/271344a0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/311243a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624634
115 https://doi.org/10.1038/311243a0
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/330470a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045212741
118 https://doi.org/10.1038/330470a0
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0012-821x(87)90206-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020644220
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0377-0273(81)90005-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050803122
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0377-0273(82)90023-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040813041
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0377-0273(84)90061-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034794062
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0377-0273(87)90057-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021193013
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/wr009i005p01242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032108576
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1029/wr010i005p00930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043837229
133 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...