New pressure-induced structural transformations in silica obtained by computer simulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-05

AUTHORS

Shinji Tsuneyuki, Yoshtto Matsui, Hideo Aoki, Masaru Tsukada

ABSTRACT

TO reproduce and predict crystal structures from first principles has been a longstanding problem in solid-state physics. We have recently shown1 that a first-principles many-body calculation for clusters can be used to extract effective pairwise interatomic potentials, which were then used in a molecular dynamics study of the stability of crystalline silica (SiO2). Here we use this approach in a molecular dynamics study of pressure-induced structural transitions at room temperature for various polymorphs of silica. We predict new structural transitions for low-quartz, low-cristobalite and coesite, in which some of the new phases, appearing without the occurrence of diffusion, comprise mixed arrays of fourfold and sixfold Si–O coordinations. Stishovite, the densest known polymorph of silica, persists up to 250 GPa, with deformation to the CaCl2 structure. Although a recent theoretical calculation predicts a possible polymorph denser than stishovite, which may be of importance in the Earth's interior2, this phase is not obtained by (simulated) compression of stishovite at room temperature, presumably because of the potential barrier between the two structures. More... »

PAGES

209-211

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/339209a0

DOI

http://dx.doi.org/10.1038/339209a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035182945


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Tokyo, Hongo 7-3-1, 113, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Physics, University of Tokyo, Hongo 7-3-1, 113, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuneyuki", 
        "givenName": "Shinji", 
        "id": "sg:person.011152432145.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152432145.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for the Study of the Earth's Interior, Okayama University, 682-02, Misasa, Tottori-ken, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261356.5", 
          "name": [
            "Institute for the Study of the Earth's Interior, Okayama University, 682-02, Misasa, Tottori-ken, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsui", 
        "givenName": "Yoshtto", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Tokyo, Hongo 7-3-1, 113, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Physics, University of Tokyo, Hongo 7-3-1, 113, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aoki", 
        "givenName": "Hideo", 
        "id": "sg:person.01121116365.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121116365.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Tokyo, Hongo 7-3-1, 113, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Physics, University of Tokyo, Hongo 7-3-1, 113, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsukada", 
        "givenName": "Masaru", 
        "id": "sg:person.016242434421.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/334052a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028727964", 
          "https://doi.org/10.1038/334052a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/336670a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028068304", 
          "https://doi.org/10.1038/336670a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-05", 
    "datePublishedReg": "1989-05-01", 
    "description": "TO reproduce and predict crystal structures from first principles has been a longstanding problem in solid-state physics. We have recently shown1 that a first-principles many-body calculation for clusters can be used to extract effective pairwise interatomic potentials, which were then used in a molecular dynamics study of the stability of crystalline silica (SiO2). Here we use this approach in a molecular dynamics study of pressure-induced structural transitions at room temperature for various polymorphs of silica. We predict new structural transitions for low-quartz, low-cristobalite and coesite, in which some of the new phases, appearing without the occurrence of diffusion, comprise mixed arrays of fourfold and sixfold Si\u2013O coordinations. Stishovite, the densest known polymorph of silica, persists up to 250 GPa, with deformation to the CaCl2 structure. Although a recent theoretical calculation predicts a possible polymorph denser than stishovite, which may be of importance in the Earth's interior2, this phase is not obtained by (simulated) compression of stishovite at room temperature, presumably because of the potential barrier between the two structures.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/339209a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6221", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "339"
      }
    ], 
    "keywords": [
      "room temperature", 
      "polymorphs of silica", 
      "sixfold Si", 
      "occurrence of diffusion", 
      "new structural transition", 
      "molecular dynamics study", 
      "pressure-induced structural transformations", 
      "dynamics study", 
      "silica", 
      "pressure-induced structural transition", 
      "structural transition", 
      "computer simulations", 
      "temperature", 
      "new phase", 
      "structural transformation", 
      "CaCl2 structure", 
      "interatomic potentials", 
      "deformation", 
      "Si", 
      "pairwise interatomic potentials", 
      "theoretical calculations", 
      "mixed array", 
      "structure", 
      "phase", 
      "simulations", 
      "first principles", 
      "GPa", 
      "solid state physics", 
      "potential barrier", 
      "crystalline silica", 
      "calculations", 
      "denser", 
      "diffusion", 
      "stability", 
      "compression", 
      "array", 
      "polymorphs", 
      "stishovite", 
      "transition", 
      "longstanding problem", 
      "physics", 
      "crystal structure", 
      "principles", 
      "problem", 
      "approach", 
      "potential", 
      "transformation", 
      "densest", 
      "study", 
      "recent theoretical calculations", 
      "barriers", 
      "coesite", 
      "occurrence", 
      "importance", 
      "coordination", 
      "clusters", 
      "body calculations", 
      "effective pairwise interatomic potentials", 
      "possible polymorph denser", 
      "polymorph denser", 
      "Earth's interior2", 
      "'s interior2", 
      "compression of stishovite", 
      "New pressure-induced structural transformations"
    ], 
    "name": "New pressure-induced structural transformations in silica obtained by computer simulation", 
    "pagination": "209-211", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035182945"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/339209a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/339209a0", 
      "https://app.dimensions.ai/details/publication/pub.1035182945"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_197.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/339209a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/339209a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/339209a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/339209a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/339209a0'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      22 PREDICATES      92 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/339209a0 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author Nd58303abdd0e4a6ca90eaa4f4cf972f8
4 schema:citation sg:pub.10.1038/334052a0
5 sg:pub.10.1038/336670a0
6 schema:datePublished 1989-05
7 schema:datePublishedReg 1989-05-01
8 schema:description TO reproduce and predict crystal structures from first principles has been a longstanding problem in solid-state physics. We have recently shown1 that a first-principles many-body calculation for clusters can be used to extract effective pairwise interatomic potentials, which were then used in a molecular dynamics study of the stability of crystalline silica (SiO2). Here we use this approach in a molecular dynamics study of pressure-induced structural transitions at room temperature for various polymorphs of silica. We predict new structural transitions for low-quartz, low-cristobalite and coesite, in which some of the new phases, appearing without the occurrence of diffusion, comprise mixed arrays of fourfold and sixfold Si–O coordinations. Stishovite, the densest known polymorph of silica, persists up to 250 GPa, with deformation to the CaCl2 structure. Although a recent theoretical calculation predicts a possible polymorph denser than stishovite, which may be of importance in the Earth's interior2, this phase is not obtained by (simulated) compression of stishovite at room temperature, presumably because of the potential barrier between the two structures.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N1737e76ced7146fb933a03c4ade5735d
13 N61c5fe7fdf3f4b5c89447e37d15b03b1
14 sg:journal.1018957
15 schema:keywords 's interior2
16 CaCl2 structure
17 Earth's interior2
18 GPa
19 New pressure-induced structural transformations
20 Si
21 approach
22 array
23 barriers
24 body calculations
25 calculations
26 clusters
27 coesite
28 compression
29 compression of stishovite
30 computer simulations
31 coordination
32 crystal structure
33 crystalline silica
34 deformation
35 denser
36 densest
37 diffusion
38 dynamics study
39 effective pairwise interatomic potentials
40 first principles
41 importance
42 interatomic potentials
43 longstanding problem
44 mixed array
45 molecular dynamics study
46 new phase
47 new structural transition
48 occurrence
49 occurrence of diffusion
50 pairwise interatomic potentials
51 phase
52 physics
53 polymorph denser
54 polymorphs
55 polymorphs of silica
56 possible polymorph denser
57 potential
58 potential barrier
59 pressure-induced structural transformations
60 pressure-induced structural transition
61 principles
62 problem
63 recent theoretical calculations
64 room temperature
65 silica
66 simulations
67 sixfold Si
68 solid state physics
69 stability
70 stishovite
71 structural transformation
72 structural transition
73 structure
74 study
75 temperature
76 theoretical calculations
77 transformation
78 transition
79 schema:name New pressure-induced structural transformations in silica obtained by computer simulation
80 schema:pagination 209-211
81 schema:productId N5641718bab8a4be5a2ab203494cb146d
82 Na983aa559e0b4f9a87f5ee8b733c4b4d
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035182945
84 https://doi.org/10.1038/339209a0
85 schema:sdDatePublished 2022-01-01T18:03
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N77f90521e61b4b789c046957f431dbd5
88 schema:url https://doi.org/10.1038/339209a0
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N0906268e218e4fa7a97fc6004102e15a rdf:first Na6795e8136bf4b2bb10b8dba05c45d95
93 rdf:rest Ne9595cb9de384a848ba59a8574169611
94 N1737e76ced7146fb933a03c4ade5735d schema:issueNumber 6221
95 rdf:type schema:PublicationIssue
96 N5641718bab8a4be5a2ab203494cb146d schema:name dimensions_id
97 schema:value pub.1035182945
98 rdf:type schema:PropertyValue
99 N61c5fe7fdf3f4b5c89447e37d15b03b1 schema:volumeNumber 339
100 rdf:type schema:PublicationVolume
101 N77f90521e61b4b789c046957f431dbd5 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N8cba7a0220d64088b87d204deeb466bb rdf:first sg:person.016242434421.06
104 rdf:rest rdf:nil
105 Na6795e8136bf4b2bb10b8dba05c45d95 schema:affiliation grid-institutes:grid.261356.5
106 schema:familyName Matsui
107 schema:givenName Yoshtto
108 rdf:type schema:Person
109 Na983aa559e0b4f9a87f5ee8b733c4b4d schema:name doi
110 schema:value 10.1038/339209a0
111 rdf:type schema:PropertyValue
112 Nd58303abdd0e4a6ca90eaa4f4cf972f8 rdf:first sg:person.011152432145.03
113 rdf:rest N0906268e218e4fa7a97fc6004102e15a
114 Ne9595cb9de384a848ba59a8574169611 rdf:first sg:person.01121116365.22
115 rdf:rest N8cba7a0220d64088b87d204deeb466bb
116 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
117 schema:name Chemical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
120 schema:name Theoretical and Computational Chemistry
121 rdf:type schema:DefinedTerm
122 sg:journal.1018957 schema:issn 0028-0836
123 1476-4687
124 schema:name Nature
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.011152432145.03 schema:affiliation grid-institutes:grid.26999.3d
128 schema:familyName Tsuneyuki
129 schema:givenName Shinji
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152432145.03
131 rdf:type schema:Person
132 sg:person.01121116365.22 schema:affiliation grid-institutes:grid.26999.3d
133 schema:familyName Aoki
134 schema:givenName Hideo
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121116365.22
136 rdf:type schema:Person
137 sg:person.016242434421.06 schema:affiliation grid-institutes:grid.26999.3d
138 schema:familyName Tsukada
139 schema:givenName Masaru
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06
141 rdf:type schema:Person
142 sg:pub.10.1038/334052a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028727964
143 https://doi.org/10.1038/334052a0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/336670a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028068304
146 https://doi.org/10.1038/336670a0
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.261356.5 schema:alternateName Institute for the Study of the Earth's Interior, Okayama University, 682-02, Misasa, Tottori-ken, Japan
149 schema:name Institute for the Study of the Earth's Interior, Okayama University, 682-02, Misasa, Tottori-ken, Japan
150 rdf:type schema:Organization
151 grid-institutes:grid.26999.3d schema:alternateName Department of Physics, University of Tokyo, Hongo 7-3-1, 113, Bunkyo-ku, Tokyo, Japan
152 schema:name Department of Physics, University of Tokyo, Hongo 7-3-1, 113, Bunkyo-ku, Tokyo, Japan
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...