Compliance of bacterial flagella measured with optical tweezers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-04

AUTHORS

Steven M. Block, David F. Blair, Howard C. Berg

ABSTRACT

THE development of the gradient force optical particle trap ('optical tweezers') has made it possible to manipulate biological materials using a single beam of laser light1. Optical traps can produce forces in the microdyne range on intact cells without causing overt damage: such forces are sufficient to arrest actively swimming bacteria2 and can overcome torque generated by the flagellar motor of a bacterium tethered to a glass surface by a flagellar filament. By calibrating the trapping force against Stokes' drag and measuring the twist that is sustained by this force, we determined the torsional compliance of flagella in tethered Escherichia coli and a motile Streptococcus. Flagella behaved as linear torsion springs for roughly half a revolution, but became much more rigid when turned beyond this point in either direction. More... »

PAGES

514-518

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/338514a0

DOI

http://dx.doi.org/10.1038/338514a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003224611

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2648159


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flagella", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lasers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Optics and Photonics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Streptococcus", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cellular and Developmental Biology, Harvard University, 16 Divinity Avenue, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Rowland Institute for Science, 100 Cambridge Parkway, 02142, Cambridge, Massachusetts, USA", 
            "Department of Cellular and Developmental Biology, Harvard University, 16 Divinity Avenue, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Block", 
        "givenName": "Steven M.", 
        "id": "sg:person.01260165373.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260165373.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cellular and Developmental Biology, Harvard University, 16 Divinity Avenue, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Cellular and Developmental Biology, Harvard University, 16 Divinity Avenue, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blair", 
        "givenName": "David F.", 
        "id": "sg:person.0700044121.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700044121.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cellular and Developmental Biology, Harvard University, 16 Divinity Avenue, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Rowland Institute for Science, 100 Cambridge Parkway, 02142, Cambridge, Massachusetts, USA", 
            "Department of Cellular and Developmental Biology, Harvard University, 16 Divinity Avenue, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berg", 
        "givenName": "Howard C.", 
        "id": "sg:person.01003205130.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003205130.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/325637a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016491463", 
          "https://doi.org/10.1038/325637a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/249073a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013527060", 
          "https://doi.org/10.1038/249073a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330769a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023765266", 
          "https://doi.org/10.1038/330769a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/249077a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038007792", 
          "https://doi.org/10.1038/249077a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/309470a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012854632", 
          "https://doi.org/10.1038/309470a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/245380a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006993053", 
          "https://doi.org/10.1038/245380a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-04", 
    "datePublishedReg": "1989-04-01", 
    "description": "THE development of the gradient force optical particle trap ('optical tweezers') has made it possible to manipulate biological materials using a single beam of laser light1. Optical traps can produce forces in the microdyne range on intact cells without causing overt damage: such forces are sufficient to arrest actively swimming bacteria2 and can overcome torque generated by the flagellar motor of a bacterium tethered to a glass surface by a flagellar filament. By calibrating the trapping force against Stokes' drag and measuring the twist that is sustained by this force, we determined the torsional compliance of flagella in tethered Escherichia coli and a motile Streptococcus. Flagella behaved as linear torsion springs for roughly half a revolution, but became much more rigid when turned beyond this point in either direction.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/338514a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6215", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "338"
      }
    ], 
    "keywords": [
      "optical trap", 
      "optical tweezers", 
      "single beam", 
      "particle traps", 
      "glass surface", 
      "motile Streptococcus", 
      "linear torsion spring", 
      "flagellar motor", 
      "traps", 
      "tweezers", 
      "beam", 
      "such forces", 
      "biological materials", 
      "Stokes drag", 
      "light1", 
      "force", 
      "surface", 
      "flagellar filaments", 
      "bacterial flagella", 
      "torsional compliance", 
      "drag", 
      "direction", 
      "range", 
      "filaments", 
      "overt damage", 
      "materials", 
      "twist", 
      "torsion spring", 
      "torque", 
      "point", 
      "damage", 
      "development", 
      "revolution", 
      "flagella", 
      "intact cells", 
      "motor", 
      "cells", 
      "spring", 
      "Escherichia coli", 
      "coli", 
      "bacterium", 
      "compliance", 
      "streptococci", 
      "gradient force optical particle trap", 
      "force optical particle trap", 
      "optical particle trap", 
      "laser light1", 
      "microdyne range", 
      "bacteria2", 
      "tethered Escherichia coli"
    ], 
    "name": "Compliance of bacterial flagella measured with optical tweezers", 
    "pagination": "514-518", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003224611"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/338514a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2648159"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/338514a0", 
      "https://app.dimensions.ai/details/publication/pub.1003224611"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_217.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/338514a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/338514a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/338514a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/338514a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/338514a0'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      88 URIs      74 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/338514a0 schema:about N210a57b1da424d3ab5b1bd2430212c25
2 N273612802e354067976f7f214ac4fe50
3 N38f1e0e18735478f8171209d53ed2b1a
4 N8533f8cefffa429faffe1f5e9f3ec5e6
5 N9c68977876f24393989b1a86587db0c1
6 anzsrc-for:02
7 anzsrc-for:0299
8 schema:author Nf46a8e5fb7f4472e912fa2ff565c72d5
9 schema:citation sg:pub.10.1038/245380a0
10 sg:pub.10.1038/249073a0
11 sg:pub.10.1038/249077a0
12 sg:pub.10.1038/309470a0
13 sg:pub.10.1038/325637a0
14 sg:pub.10.1038/330769a0
15 schema:datePublished 1989-04
16 schema:datePublishedReg 1989-04-01
17 schema:description THE development of the gradient force optical particle trap ('optical tweezers') has made it possible to manipulate biological materials using a single beam of laser light1. Optical traps can produce forces in the microdyne range on intact cells without causing overt damage: such forces are sufficient to arrest actively swimming bacteria2 and can overcome torque generated by the flagellar motor of a bacterium tethered to a glass surface by a flagellar filament. By calibrating the trapping force against Stokes' drag and measuring the twist that is sustained by this force, we determined the torsional compliance of flagella in tethered Escherichia coli and a motile Streptococcus. Flagella behaved as linear torsion springs for roughly half a revolution, but became much more rigid when turned beyond this point in either direction.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N67b0f3d13133488a897ce1c32dab775f
22 Nbeda3c4b0b974a1aa6472269003ed2d6
23 sg:journal.1018957
24 schema:keywords Escherichia coli
25 Stokes drag
26 bacteria2
27 bacterial flagella
28 bacterium
29 beam
30 biological materials
31 cells
32 coli
33 compliance
34 damage
35 development
36 direction
37 drag
38 filaments
39 flagella
40 flagellar filaments
41 flagellar motor
42 force
43 force optical particle trap
44 glass surface
45 gradient force optical particle trap
46 intact cells
47 laser light1
48 light1
49 linear torsion spring
50 materials
51 microdyne range
52 motile Streptococcus
53 motor
54 optical particle trap
55 optical trap
56 optical tweezers
57 overt damage
58 particle traps
59 point
60 range
61 revolution
62 single beam
63 spring
64 streptococci
65 such forces
66 surface
67 tethered Escherichia coli
68 torque
69 torsion spring
70 torsional compliance
71 traps
72 tweezers
73 twist
74 schema:name Compliance of bacterial flagella measured with optical tweezers
75 schema:pagination 514-518
76 schema:productId N478476f86cee478bb9e58ce03da16002
77 N8bcc452516d446afb24bd2da50a94a10
78 Na29729bac6be4b178245c46f8de27ab4
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003224611
80 https://doi.org/10.1038/338514a0
81 schema:sdDatePublished 2021-12-01T19:07
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N5c9c2decb88b4f6bb281e718ee5ebedd
84 schema:url https://doi.org/10.1038/338514a0
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N210a57b1da424d3ab5b1bd2430212c25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Optics and Photonics
90 rdf:type schema:DefinedTerm
91 N273612802e354067976f7f214ac4fe50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Escherichia coli
93 rdf:type schema:DefinedTerm
94 N38f1e0e18735478f8171209d53ed2b1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Lasers
96 rdf:type schema:DefinedTerm
97 N41fcda3b7d6b46738293eeae3b496560 rdf:first sg:person.0700044121.71
98 rdf:rest N912640be1f034c57abe662594196b66f
99 N478476f86cee478bb9e58ce03da16002 schema:name doi
100 schema:value 10.1038/338514a0
101 rdf:type schema:PropertyValue
102 N5c9c2decb88b4f6bb281e718ee5ebedd schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N67b0f3d13133488a897ce1c32dab775f schema:volumeNumber 338
105 rdf:type schema:PublicationVolume
106 N8533f8cefffa429faffe1f5e9f3ec5e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Streptococcus
108 rdf:type schema:DefinedTerm
109 N8bcc452516d446afb24bd2da50a94a10 schema:name dimensions_id
110 schema:value pub.1003224611
111 rdf:type schema:PropertyValue
112 N912640be1f034c57abe662594196b66f rdf:first sg:person.01003205130.52
113 rdf:rest rdf:nil
114 N9c68977876f24393989b1a86587db0c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Flagella
116 rdf:type schema:DefinedTerm
117 Na29729bac6be4b178245c46f8de27ab4 schema:name pubmed_id
118 schema:value 2648159
119 rdf:type schema:PropertyValue
120 Nbeda3c4b0b974a1aa6472269003ed2d6 schema:issueNumber 6215
121 rdf:type schema:PublicationIssue
122 Nf46a8e5fb7f4472e912fa2ff565c72d5 rdf:first sg:person.01260165373.11
123 rdf:rest N41fcda3b7d6b46738293eeae3b496560
124 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
128 schema:name Other Physical Sciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1018957 schema:issn 0028-0836
131 1476-4687
132 schema:name Nature
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01003205130.52 schema:affiliation grid-institutes:grid.38142.3c
136 schema:familyName Berg
137 schema:givenName Howard C.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003205130.52
139 rdf:type schema:Person
140 sg:person.01260165373.11 schema:affiliation grid-institutes:grid.38142.3c
141 schema:familyName Block
142 schema:givenName Steven M.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260165373.11
144 rdf:type schema:Person
145 sg:person.0700044121.71 schema:affiliation grid-institutes:grid.38142.3c
146 schema:familyName Blair
147 schema:givenName David F.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700044121.71
149 rdf:type schema:Person
150 sg:pub.10.1038/245380a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006993053
151 https://doi.org/10.1038/245380a0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/249073a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013527060
154 https://doi.org/10.1038/249073a0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/249077a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038007792
157 https://doi.org/10.1038/249077a0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/309470a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012854632
160 https://doi.org/10.1038/309470a0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/325637a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016491463
163 https://doi.org/10.1038/325637a0
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/330769a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023765266
166 https://doi.org/10.1038/330769a0
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.38142.3c schema:alternateName Department of Cellular and Developmental Biology, Harvard University, 16 Divinity Avenue, 02138, Cambridge, Massachusetts, USA
169 schema:name Department of Cellular and Developmental Biology, Harvard University, 16 Divinity Avenue, 02138, Cambridge, Massachusetts, USA
170 Rowland Institute for Science, 100 Cambridge Parkway, 02142, Cambridge, Massachusetts, USA
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...