Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-11

AUTHORS

J. Fred Hess, Robert B. Bourret, Melvin I. Simon

ABSTRACT

A cascade of protein phosphorylation, initiated by autophosphorylation of the CheA protein, may be important in the signal transduction pathway of bacterial chemotaxis. A proteolytic fragment of CheA cannot autophosphorylate, but can still transfer phosphate to proteins that generate excitation and adaptation signals. The site of CheA phosphorylation is His 48; mutants altered at this position are non-chemotactic. Similar mechanisms of transient protein phosphorylation and phosphoryl group transfer seem to be involved in processing sensory data and in activating specific gene expression. More... »

PAGES

139-143

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/336139a0

DOI

http://dx.doi.org/10.1038/336139a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029683878

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3185734


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemotaxis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, High Pressure Liquid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Histidine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methyl-Accepting Chemotaxis Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphorylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Biology, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of Biology, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hess", 
        "givenName": "J. Fred", 
        "id": "sg:person.01026433751.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026433751.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Biology, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of Biology, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourret", 
        "givenName": "Robert B.", 
        "id": "sg:person.0674541232.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674541232.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Biology, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of Biology, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simon", 
        "givenName": "Melvin I.", 
        "id": "sg:person.010076553732.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076553732.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/249074a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051894411", 
          "https://doi.org/10.1038/249074a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00270156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020225961", 
          "https://doi.org/10.1007/bf00270156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/249073a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013527060", 
          "https://doi.org/10.1038/249073a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-4601-2_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049654685", 
          "https://doi.org/10.1007/978-1-4684-4601-2_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/280279a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025335795", 
          "https://doi.org/10.1038/280279a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/302842a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052799882", 
          "https://doi.org/10.1038/302842a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-11", 
    "datePublishedReg": "1988-11-01", 
    "description": "A cascade of protein phosphorylation, initiated by autophosphorylation of the CheA protein, may be important in the signal transduction pathway of bacterial chemotaxis. A proteolytic fragment of CheA cannot autophosphorylate, but can still transfer phosphate to proteins that generate excitation and adaptation signals. The site of CheA phosphorylation is His 48; mutants altered at this position are non-chemotactic. Similar mechanisms of transient protein phosphorylation and phosphoryl group transfer seem to be involved in processing sensory data and in activating specific gene expression.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/336139a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6195", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "336"
      }
    ], 
    "keywords": [
      "phosphoryl group transfer", 
      "protein phosphorylation", 
      "bacterial chemotaxis", 
      "transient protein phosphorylation", 
      "specific gene expression", 
      "signal transduction pathways", 
      "CheA protein", 
      "histidine phosphorylation", 
      "CheA phosphorylation", 
      "transduction pathways", 
      "gene expression", 
      "group transfer", 
      "phosphorylation", 
      "adaptation signals", 
      "proteolytic fragments", 
      "protein", 
      "similar mechanism", 
      "chemotaxis", 
      "CheA", 
      "autophosphorylation", 
      "mutants", 
      "pathway", 
      "cascade", 
      "expression", 
      "fragments", 
      "sites", 
      "mechanism", 
      "transfer", 
      "signals", 
      "position", 
      "data", 
      "sensory data", 
      "excitation"
    ], 
    "name": "Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis", 
    "pagination": "139-143", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029683878"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/336139a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3185734"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/336139a0", 
      "https://app.dimensions.ai/details/publication/pub.1029683878"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_213.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/336139a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/336139a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/336139a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/336139a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/336139a0'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      22 PREDICATES      77 URIs      63 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/336139a0 schema:about N0fcd9f03d29a475bb476084069480191
2 N246fe12f9efa45dc95362367a79a11f3
3 N61fbc9d78ec74cf8a863d49f8ebc8d89
4 N69b23af4258f40cc83672f6b74266db8
5 N9c2361d4d994409397b5182c75da9d22
6 N9d9040adeddb4072abd9d17076d48041
7 Na0404a54d66d42fbbb0bd6b0082cabc2
8 Naef283ff399c4c4b8accf08261d87840
9 Nbd165e91f5ff43cfbad65634478dd808
10 Ncb2c6fee2c994299807226bc1c361488
11 Ne7ff2060bc924c7387fc83dedab58d84
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Nf426472c6c8542359fe085873de6eb6f
15 schema:citation sg:pub.10.1007/978-1-4684-4601-2_15
16 sg:pub.10.1007/bf00270156
17 sg:pub.10.1038/249073a0
18 sg:pub.10.1038/249074a0
19 sg:pub.10.1038/280279a0
20 sg:pub.10.1038/302842a0
21 schema:datePublished 1988-11
22 schema:datePublishedReg 1988-11-01
23 schema:description A cascade of protein phosphorylation, initiated by autophosphorylation of the CheA protein, may be important in the signal transduction pathway of bacterial chemotaxis. A proteolytic fragment of CheA cannot autophosphorylate, but can still transfer phosphate to proteins that generate excitation and adaptation signals. The site of CheA phosphorylation is His 48; mutants altered at this position are non-chemotactic. Similar mechanisms of transient protein phosphorylation and phosphoryl group transfer seem to be involved in processing sensory data and in activating specific gene expression.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N7133cc5095da4ca19eb5d6b1afba9ad1
28 N78638402e1ff4aacb32ed73488d1ca3b
29 sg:journal.1018957
30 schema:keywords CheA
31 CheA phosphorylation
32 CheA protein
33 adaptation signals
34 autophosphorylation
35 bacterial chemotaxis
36 cascade
37 chemotaxis
38 data
39 excitation
40 expression
41 fragments
42 gene expression
43 group transfer
44 histidine phosphorylation
45 mechanism
46 mutants
47 pathway
48 phosphoryl group transfer
49 phosphorylation
50 position
51 protein
52 protein phosphorylation
53 proteolytic fragments
54 sensory data
55 signal transduction pathways
56 signals
57 similar mechanism
58 sites
59 specific gene expression
60 transduction pathways
61 transfer
62 transient protein phosphorylation
63 schema:name Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis
64 schema:pagination 139-143
65 schema:productId N2c918e08833f46bc83c4827c74eb6337
66 N8d4e4c29ba76411c98b39242d13fbfbc
67 Nd9604ca613664c3cbd5d95197a7af1a2
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683878
69 https://doi.org/10.1038/336139a0
70 schema:sdDatePublished 2022-01-01T18:05
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nbd886e664c694ca7922a0f1e3fd0a4e5
73 schema:url https://doi.org/10.1038/336139a0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0fcd9f03d29a475bb476084069480191 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Signal Transduction
79 rdf:type schema:DefinedTerm
80 N246fe12f9efa45dc95362367a79a11f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Phosphates
82 rdf:type schema:DefinedTerm
83 N2c918e08833f46bc83c4827c74eb6337 schema:name pubmed_id
84 schema:value 3185734
85 rdf:type schema:PropertyValue
86 N61fbc9d78ec74cf8a863d49f8ebc8d89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Amino Acid Sequence
88 rdf:type schema:DefinedTerm
89 N69b23af4258f40cc83672f6b74266db8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Histidine
91 rdf:type schema:DefinedTerm
92 N7133cc5095da4ca19eb5d6b1afba9ad1 schema:volumeNumber 336
93 rdf:type schema:PublicationVolume
94 N78638402e1ff4aacb32ed73488d1ca3b schema:issueNumber 6195
95 rdf:type schema:PublicationIssue
96 N8d4e4c29ba76411c98b39242d13fbfbc schema:name doi
97 schema:value 10.1038/336139a0
98 rdf:type schema:PropertyValue
99 N97f84036f62d4c0e82a7a9eb1d1a0aa1 rdf:first sg:person.010076553732.12
100 rdf:rest rdf:nil
101 N9c2361d4d994409397b5182c75da9d22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Chemotaxis
103 rdf:type schema:DefinedTerm
104 N9d9040adeddb4072abd9d17076d48041 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Methyl-Accepting Chemotaxis Proteins
106 rdf:type schema:DefinedTerm
107 Na0404a54d66d42fbbb0bd6b0082cabc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Mutation
109 rdf:type schema:DefinedTerm
110 Naef283ff399c4c4b8accf08261d87840 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Chromatography, High Pressure Liquid
112 rdf:type schema:DefinedTerm
113 Nafa7cdf09e0b41cb897c294ea128151a rdf:first sg:person.0674541232.68
114 rdf:rest N97f84036f62d4c0e82a7a9eb1d1a0aa1
115 Nbd165e91f5ff43cfbad65634478dd808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Phosphorylation
117 rdf:type schema:DefinedTerm
118 Nbd886e664c694ca7922a0f1e3fd0a4e5 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Ncb2c6fee2c994299807226bc1c361488 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Membrane Proteins
122 rdf:type schema:DefinedTerm
123 Nd9604ca613664c3cbd5d95197a7af1a2 schema:name dimensions_id
124 schema:value pub.1029683878
125 rdf:type schema:PropertyValue
126 Ne7ff2060bc924c7387fc83dedab58d84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Bacterial Proteins
128 rdf:type schema:DefinedTerm
129 Nf426472c6c8542359fe085873de6eb6f rdf:first sg:person.01026433751.56
130 rdf:rest Nafa7cdf09e0b41cb897c294ea128151a
131 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
132 schema:name Biological Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biochemistry and Cell Biology
136 rdf:type schema:DefinedTerm
137 sg:journal.1018957 schema:issn 0028-0836
138 1476-4687
139 schema:name Nature
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.010076553732.12 schema:affiliation grid-institutes:grid.20861.3d
143 schema:familyName Simon
144 schema:givenName Melvin I.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076553732.12
146 rdf:type schema:Person
147 sg:person.01026433751.56 schema:affiliation grid-institutes:grid.20861.3d
148 schema:familyName Hess
149 schema:givenName J. Fred
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026433751.56
151 rdf:type schema:Person
152 sg:person.0674541232.68 schema:affiliation grid-institutes:grid.20861.3d
153 schema:familyName Bourret
154 schema:givenName Robert B.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674541232.68
156 rdf:type schema:Person
157 sg:pub.10.1007/978-1-4684-4601-2_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049654685
158 https://doi.org/10.1007/978-1-4684-4601-2_15
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf00270156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020225961
161 https://doi.org/10.1007/bf00270156
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/249073a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013527060
164 https://doi.org/10.1038/249073a0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/249074a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051894411
167 https://doi.org/10.1038/249074a0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/280279a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025335795
170 https://doi.org/10.1038/280279a0
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/302842a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052799882
173 https://doi.org/10.1038/302842a0
174 rdf:type schema:CreativeWork
175 grid-institutes:grid.20861.3d schema:alternateName Division of Biology, California Institute of Technology, 91125, Pasadena, California, USA
176 schema:name Division of Biology, California Institute of Technology, 91125, Pasadena, California, USA
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...