Genome linking with yeast artificial chromosomes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-09

AUTHORS

A Coulson, R Waterston, J Kiff, J Sulston, Y Kohara

ABSTRACT

The haploid genome of Caenorhabditis elegans consists of some 80 x 10(6) base pairs of DNA contained in six chromosomes. The large number of interesting loci that have been recognized by mutation, and the accuracy of the genetic map, mean that a physical map of the genome is highly desirable, because it will facilitate the molecular cloning of chosen loci. The first steps towards such a map used a fingerprinting method to link cosmid clones together. This approach reached its practical limit last year, when 90-95% of the genome had been cloned into 17,500 cosmids assembled into some 700 clusters (contigs), but the linking clones needed were either non-existent or extremely rare. Anticipating this, we had planned to link by physical means--probably by hybridization to NotI fragments separated by pulse field gel electrophoresis. NotI recognizes an eight base sequence of GC pairs; thus the fragments should be large enough to bridge regions that clone poorly in cosmids, and, with no selective step involved, would necessarily be fully representative. However, with the availability of a yeast artificial chromosome (YAC) vector, we decided to use this alternative source of large DNA fragments to obtain linkage. The technique involves the ligation of large (50-1,000 kilobase) genomic fragments into a vector that provides centromeric, telomeric and selective functions; the constructs are then introduced into Saccharomyces cerevisiae, and replicate in the same manner as the host chromosomes. More... »

PAGES

184-186

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/335184a0

DOI

http://dx.doi.org/10.1038/335184a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005161193

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3045566


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cosmids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "MRC Laboratory of Molecular Biology, Cambridge, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coulson", 
        "givenName": "A", 
        "id": "sg:person.0114110467.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0114110467.59"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Waterston", 
        "givenName": "R", 
        "id": "sg:person.0772724136.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772724136.39"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kiff", 
        "givenName": "J", 
        "id": "sg:person.01102431115.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102431115.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Sulston", 
        "givenName": "J", 
        "id": "sg:person.01110562067.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110562067.49"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kohara", 
        "givenName": "Y", 
        "id": "sg:person.01160352371.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160352371.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0092-8674(84)90301-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006653804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(84)90381-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010023016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(83)90418-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012973560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(79)90267-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019666719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(87)90017-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035030487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(87)90017-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035030487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(87)55031-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036117217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/15.15.5925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040605417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(87)90016-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044209352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(87)90016-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044209352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/7.6.1513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046335196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/4.1.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3033825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062584457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3538420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062619532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1986.tb04550.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077183865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1985.tb03961.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080103242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080639601", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-09", 
    "datePublishedReg": "1988-09-01", 
    "description": "The haploid genome of Caenorhabditis elegans consists of some 80 x 10(6) base pairs of DNA contained in six chromosomes. The large number of interesting loci that have been recognized by mutation, and the accuracy of the genetic map, mean that a physical map of the genome is highly desirable, because it will facilitate the molecular cloning of chosen loci. The first steps towards such a map used a fingerprinting method to link cosmid clones together. This approach reached its practical limit last year, when 90-95% of the genome had been cloned into 17,500 cosmids assembled into some 700 clusters (contigs), but the linking clones needed were either non-existent or extremely rare. Anticipating this, we had planned to link by physical means--probably by hybridization to NotI fragments separated by pulse field gel electrophoresis. NotI recognizes an eight base sequence of GC pairs; thus the fragments should be large enough to bridge regions that clone poorly in cosmids, and, with no selective step involved, would necessarily be fully representative. However, with the availability of a yeast artificial chromosome (YAC) vector, we decided to use this alternative source of large DNA fragments to obtain linkage. The technique involves the ligation of large (50-1,000 kilobase) genomic fragments into a vector that provides centromeric, telomeric and selective functions; the constructs are then introduced into Saccharomyces cerevisiae, and replicate in the same manner as the host chromosomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/335184a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6186", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "335"
      }
    ], 
    "name": "Genome linking with yeast artificial chromosomes", 
    "pagination": "184-186", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1896f5b0681c4de491d7b3738492369ec1c057d2e7f9c31740010cd78ba37b1e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3045566"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/335184a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005161193"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/335184a0", 
      "https://app.dimensions.ai/details/publication/pub.1005161193"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/335184a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/335184a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/335184a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/335184a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/335184a0'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      56 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/335184a0 schema:about N1252c175767146f088ace3b5085925d5
2 N13101a22ab6247c0864590c0eaaa2770
3 N16db704426f34b37b7040d2dc20cbb99
4 N28b23d48c3fa43aa8fe269cc1e7a0b10
5 N327e8da560974bfcbff1e7bf9bcbf706
6 N3832a91281f14c18825c3c79eed63802
7 N41d630c12b894e1799246fa73cfdfc7c
8 N79d2e6da559a47fe892938d12317017b
9 N7e72722d655740c2b670d795cf14d52e
10 Nae925452cb4f469a94a49b971d121bc5
11 Nb7ba2605c0164c92ba1edd81d1c16e91
12 Ncff79bb96aa44010b7f3cf20e4518f60
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N9b414d6c16784c67b62183c3789b00ce
16 schema:citation https://app.dimensions.ai/details/publication/pub.1080639601
17 https://doi.org/10.1002/j.1460-2075.1985.tb03961.x
18 https://doi.org/10.1002/j.1460-2075.1986.tb04550.x
19 https://doi.org/10.1016/0003-2697(83)90418-9
20 https://doi.org/10.1016/0003-2697(84)90381-6
21 https://doi.org/10.1016/0022-2836(79)90267-5
22 https://doi.org/10.1016/0076-6879(87)55031-5
23 https://doi.org/10.1016/0092-8674(84)90301-5
24 https://doi.org/10.1016/0378-1119(87)90016-3
25 https://doi.org/10.1016/0378-1119(87)90017-5
26 https://doi.org/10.1093/bioinformatics/4.1.125
27 https://doi.org/10.1093/nar/15.15.5925
28 https://doi.org/10.1093/nar/7.6.1513
29 https://doi.org/10.1126/science.3033825
30 https://doi.org/10.1126/science.3538420
31 schema:datePublished 1988-09
32 schema:datePublishedReg 1988-09-01
33 schema:description The haploid genome of Caenorhabditis elegans consists of some 80 x 10(6) base pairs of DNA contained in six chromosomes. The large number of interesting loci that have been recognized by mutation, and the accuracy of the genetic map, mean that a physical map of the genome is highly desirable, because it will facilitate the molecular cloning of chosen loci. The first steps towards such a map used a fingerprinting method to link cosmid clones together. This approach reached its practical limit last year, when 90-95% of the genome had been cloned into 17,500 cosmids assembled into some 700 clusters (contigs), but the linking clones needed were either non-existent or extremely rare. Anticipating this, we had planned to link by physical means--probably by hybridization to NotI fragments separated by pulse field gel electrophoresis. NotI recognizes an eight base sequence of GC pairs; thus the fragments should be large enough to bridge regions that clone poorly in cosmids, and, with no selective step involved, would necessarily be fully representative. However, with the availability of a yeast artificial chromosome (YAC) vector, we decided to use this alternative source of large DNA fragments to obtain linkage. The technique involves the ligation of large (50-1,000 kilobase) genomic fragments into a vector that provides centromeric, telomeric and selective functions; the constructs are then introduced into Saccharomyces cerevisiae, and replicate in the same manner as the host chromosomes.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N2a96b3d131994bed9d70cabd822dab55
38 N6888e289b7c1447cb9a8fb60a74b33b8
39 sg:journal.1018957
40 schema:name Genome linking with yeast artificial chromosomes
41 schema:pagination 184-186
42 schema:productId N48a5fea413234cd687468d3c608c12a6
43 N7161a480a3c147c89f464384bc2ed008
44 N7a9ca3d276154d6289d01916d4c2b4b7
45 Nd8c83a5dd3b3402d9118cd53f5cb2763
46 Nfbff1375d4b34a12a2005f2536c43a0c
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005161193
48 https://doi.org/10.1038/335184a0
49 schema:sdDatePublished 2019-04-10T13:55
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nf91085ef69dd4d52aa6bc17fc6777ea9
52 schema:url http://www.nature.com/articles/335184a0
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1252c175767146f088ace3b5085925d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Base Sequence
58 rdf:type schema:DefinedTerm
59 N13101a22ab6247c0864590c0eaaa2770 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Genes
61 rdf:type schema:DefinedTerm
62 N16db704426f34b37b7040d2dc20cbb99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Saccharomyces cerevisiae
64 rdf:type schema:DefinedTerm
65 N28b23d48c3fa43aa8fe269cc1e7a0b10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Cosmids
67 rdf:type schema:DefinedTerm
68 N2a96b3d131994bed9d70cabd822dab55 schema:issueNumber 6186
69 rdf:type schema:PublicationIssue
70 N300c52027f1541ada8095104790d5880 rdf:first sg:person.01102431115.23
71 rdf:rest N6c46a92930dd447b85b775b348d18187
72 N327e8da560974bfcbff1e7bf9bcbf706 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Chromosomes, Fungal
74 rdf:type schema:DefinedTerm
75 N3832a91281f14c18825c3c79eed63802 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Animals
77 rdf:type schema:DefinedTerm
78 N41d630c12b894e1799246fa73cfdfc7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Molecular Sequence Data
80 rdf:type schema:DefinedTerm
81 N48a5fea413234cd687468d3c608c12a6 schema:name dimensions_id
82 schema:value pub.1005161193
83 rdf:type schema:PropertyValue
84 N6888e289b7c1447cb9a8fb60a74b33b8 schema:volumeNumber 335
85 rdf:type schema:PublicationVolume
86 N6c46a92930dd447b85b775b348d18187 rdf:first sg:person.01110562067.49
87 rdf:rest Nba6f38ef624941b2998a9bbe6ca39bc8
88 N7161a480a3c147c89f464384bc2ed008 schema:name readcube_id
89 schema:value 1896f5b0681c4de491d7b3738492369ec1c057d2e7f9c31740010cd78ba37b1e
90 rdf:type schema:PropertyValue
91 N79d2e6da559a47fe892938d12317017b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Gene Library
93 rdf:type schema:DefinedTerm
94 N7a9ca3d276154d6289d01916d4c2b4b7 schema:name pubmed_id
95 schema:value 3045566
96 rdf:type schema:PropertyValue
97 N7e72722d655740c2b670d795cf14d52e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Caenorhabditis
99 rdf:type schema:DefinedTerm
100 N9b414d6c16784c67b62183c3789b00ce rdf:first sg:person.0114110467.59
101 rdf:rest Ncbacbcbcdc9c410a8920930061a93017
102 Nae925452cb4f469a94a49b971d121bc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Nucleic Acid Hybridization
104 rdf:type schema:DefinedTerm
105 Nb7ba2605c0164c92ba1edd81d1c16e91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Chromosome Mapping
107 rdf:type schema:DefinedTerm
108 Nba6f38ef624941b2998a9bbe6ca39bc8 rdf:first sg:person.01160352371.64
109 rdf:rest rdf:nil
110 Ncbacbcbcdc9c410a8920930061a93017 rdf:first sg:person.0772724136.39
111 rdf:rest N300c52027f1541ada8095104790d5880
112 Ncff79bb96aa44010b7f3cf20e4518f60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Genetic Vectors
114 rdf:type schema:DefinedTerm
115 Nd8c83a5dd3b3402d9118cd53f5cb2763 schema:name nlm_unique_id
116 schema:value 0410462
117 rdf:type schema:PropertyValue
118 Nf91085ef69dd4d52aa6bc17fc6777ea9 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nfbff1375d4b34a12a2005f2536c43a0c schema:name doi
121 schema:value 10.1038/335184a0
122 rdf:type schema:PropertyValue
123 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
124 schema:name Biological Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
127 schema:name Genetics
128 rdf:type schema:DefinedTerm
129 sg:journal.1018957 schema:issn 0090-0028
130 1476-4687
131 schema:name Nature
132 rdf:type schema:Periodical
133 sg:person.01102431115.23 schema:familyName Kiff
134 schema:givenName J
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102431115.23
136 rdf:type schema:Person
137 sg:person.01110562067.49 schema:familyName Sulston
138 schema:givenName J
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110562067.49
140 rdf:type schema:Person
141 sg:person.0114110467.59 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
142 schema:familyName Coulson
143 schema:givenName A
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0114110467.59
145 rdf:type schema:Person
146 sg:person.01160352371.64 schema:familyName Kohara
147 schema:givenName Y
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160352371.64
149 rdf:type schema:Person
150 sg:person.0772724136.39 schema:familyName Waterston
151 schema:givenName R
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772724136.39
153 rdf:type schema:Person
154 https://app.dimensions.ai/details/publication/pub.1080639601 schema:CreativeWork
155 https://doi.org/10.1002/j.1460-2075.1985.tb03961.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1080103242
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/j.1460-2075.1986.tb04550.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077183865
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0003-2697(83)90418-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012973560
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0003-2697(84)90381-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010023016
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0022-2836(79)90267-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019666719
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0076-6879(87)55031-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036117217
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/0092-8674(84)90301-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006653804
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0378-1119(87)90016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044209352
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0378-1119(87)90017-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035030487
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/bioinformatics/4.1.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413720
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/nar/15.15.5925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040605417
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/7.6.1513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046335196
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.3033825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062584457
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.3538420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062619532
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.42475.30 schema:alternateName MRC Laboratory of Molecular Biology
184 schema:name MRC Laboratory of Molecular Biology, Cambridge, UK.
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...