Why ion pair reversal by protein engineering is unlikely to succeed View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-07

AUTHORS

J K Hwang, A Warshel

ABSTRACT

Genetic engineering is a powerful tool for exploring correlations between structure and function in proteins, but as yet we are unable to use it for effective protein design. One of the most interesting examples, which would seem to be obvious, is reversing the polarity of an ion pair. Changing a positively charged protein group, that provides a strong binding for negative substrates, to a negative group is expected to provide an effective binding site for a positively charged substrate. But several recent experiments on aspartate aminotransferase, trypsin and aspartate transcarbamoylase (Schachman, H. K. personal communication) have indicated that polarity reversal is not so successful. Here we argue that the same factors that make the enzyme an effective system for the (-+) pair will make it a much less effective system for the (+-) pair. We also point out that the unusually low effective dielectric constant (epsilon approximately equal to 13) for the (-+) interaction is due to its microenvironment and this will destabilize a (+-) arrangement having an entirely different dielectric constant (epsilon approximately equal to 80). The calculations presented here evaluate the energetics of ion pairs in protein active sites on a semiquantitative level. This is particularly important when dealing with strong, functionally important interactions that are difficult to evaluate with macroscopic models. More... »

PAGES

270-272

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/334270a0

DOI

http://dx.doi.org/10.1038/334270a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015697048

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3165161


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aspartate Aminotransferases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Physical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Mutational Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Properties", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Chemistry, University of Southern California, Los Angeles 90089-0482."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "J K", 
        "id": "sg:person.013046106227.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046106227.70"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Warshel", 
        "givenName": "A", 
        "id": "sg:person.01062727014.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062727014.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/330015a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000633030", 
          "https://doi.org/10.1038/330015a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/329561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023300524", 
          "https://doi.org/10.1038/329561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330084a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025258300", 
          "https://doi.org/10.1038/330084a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328551a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029275467", 
          "https://doi.org/10.1038/328551a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328496a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033580843", 
          "https://doi.org/10.1038/328496a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(84)90333-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033880362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500005333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053955452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500005333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053955452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00374a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055172685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00383a031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055173077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00384a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055173086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00514a028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055178941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00241a072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055716986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00294a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055721063"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-07", 
    "datePublishedReg": "1988-07-01", 
    "description": "Genetic engineering is a powerful tool for exploring correlations between structure and function in proteins, but as yet we are unable to use it for effective protein design. One of the most interesting examples, which would seem to be obvious, is reversing the polarity of an ion pair. Changing a positively charged protein group, that provides a strong binding for negative substrates, to a negative group is expected to provide an effective binding site for a positively charged substrate. But several recent experiments on aspartate aminotransferase, trypsin and aspartate transcarbamoylase (Schachman, H. K. personal communication) have indicated that polarity reversal is not so successful. Here we argue that the same factors that make the enzyme an effective system for the (-+) pair will make it a much less effective system for the (+-) pair. We also point out that the unusually low effective dielectric constant (epsilon approximately equal to 13) for the (-+) interaction is due to its microenvironment and this will destabilize a (+-) arrangement having an entirely different dielectric constant (epsilon approximately equal to 80). The calculations presented here evaluate the energetics of ion pairs in protein active sites on a semiquantitative level. This is particularly important when dealing with strong, functionally important interactions that are difficult to evaluate with macroscopic models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/334270a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6179", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "334"
      }
    ], 
    "name": "Why ion pair reversal by protein engineering is unlikely to succeed", 
    "pagination": "270-272", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4aca24deb9c1930941d2eaefd639dc3ccca061dfd885f4e2942fc3bade98ef96"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3165161"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/334270a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015697048"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/334270a0", 
      "https://app.dimensions.ai/details/publication/pub.1015697048"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/334270a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/334270a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/334270a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/334270a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/334270a0'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      53 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/334270a0 schema:about N1102767a67034d95b7225aa57870168c
2 N160c123316204fd2aa184dd76c25ddd7
3 N276a05e2f1ab422f8a360801f91e75d9
4 N402ef46e1e8649eda7f8d20a520f90f6
5 N54f91e5d22934ccfb15f721aaf0ffdef
6 N7abb8334dc6d4c18967f822483ceaf66
7 N9ff92ded519f4481b48dd351828e9c68
8 Nbe689439b437457faafc3d97aa1762e5
9 Nc82f3a2031b247c991ec290b1323e7d2
10 Ne1f79cc863e8448f9b06bbf9f7c78331
11 Nff9cb1ab09044525ac3994978c7429cc
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author N05287d769a7146cd80c47b3008600e76
15 schema:citation sg:pub.10.1038/328496a0
16 sg:pub.10.1038/328551a0
17 sg:pub.10.1038/329561a0
18 sg:pub.10.1038/330015a0
19 sg:pub.10.1038/330084a0
20 https://doi.org/10.1016/0022-2836(84)90333-4
21 https://doi.org/10.1017/s0033583500005333
22 https://doi.org/10.1021/bi00374a006
23 https://doi.org/10.1021/bi00383a031
24 https://doi.org/10.1021/bi00384a003
25 https://doi.org/10.1021/bi00514a028
26 https://doi.org/10.1021/ja00241a072
27 https://doi.org/10.1021/ja00294a005
28 schema:datePublished 1988-07
29 schema:datePublishedReg 1988-07-01
30 schema:description Genetic engineering is a powerful tool for exploring correlations between structure and function in proteins, but as yet we are unable to use it for effective protein design. One of the most interesting examples, which would seem to be obvious, is reversing the polarity of an ion pair. Changing a positively charged protein group, that provides a strong binding for negative substrates, to a negative group is expected to provide an effective binding site for a positively charged substrate. But several recent experiments on aspartate aminotransferase, trypsin and aspartate transcarbamoylase (Schachman, H. K. personal communication) have indicated that polarity reversal is not so successful. Here we argue that the same factors that make the enzyme an effective system for the (-+) pair will make it a much less effective system for the (+-) pair. We also point out that the unusually low effective dielectric constant (epsilon approximately equal to 13) for the (-+) interaction is due to its microenvironment and this will destabilize a (+-) arrangement having an entirely different dielectric constant (epsilon approximately equal to 80). The calculations presented here evaluate the energetics of ion pairs in protein active sites on a semiquantitative level. This is particularly important when dealing with strong, functionally important interactions that are difficult to evaluate with macroscopic models.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N45fe92bc543f43fe88b19b2e26ec26da
35 Nd8271111650b44a1a8951880fdc46934
36 sg:journal.1018957
37 schema:name Why ion pair reversal by protein engineering is unlikely to succeed
38 schema:pagination 270-272
39 schema:productId N17fa846cb340462e96000be4dfe190c9
40 N7b3d5a6caf5341d69e3d7d687e9f056c
41 N86dca69674b64fe492dbe4373c44010b
42 N9e5effded35c4d209b874d630ecc4c1c
43 Nc508930e8e184a35b71d4c2758d2380c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015697048
45 https://doi.org/10.1038/334270a0
46 schema:sdDatePublished 2019-04-10T23:11
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Ne0c8d29ee0414384afb648275fb2bc1b
49 schema:url http://www.nature.com/articles/334270a0
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N05287d769a7146cd80c47b3008600e76 rdf:first sg:person.013046106227.70
54 rdf:rest N112c89b963774417917f395f593327c1
55 N1102767a67034d95b7225aa57870168c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Chemical Phenomena
57 rdf:type schema:DefinedTerm
58 N112c89b963774417917f395f593327c1 rdf:first sg:person.01062727014.41
59 rdf:rest rdf:nil
60 N160c123316204fd2aa184dd76c25ddd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Aspartate Aminotransferases
62 rdf:type schema:DefinedTerm
63 N17fa846cb340462e96000be4dfe190c9 schema:name doi
64 schema:value 10.1038/334270a0
65 rdf:type schema:PropertyValue
66 N276a05e2f1ab422f8a360801f91e75d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Binding Sites
68 rdf:type schema:DefinedTerm
69 N402ef46e1e8649eda7f8d20a520f90f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Chemistry, Physical
71 rdf:type schema:DefinedTerm
72 N45fe92bc543f43fe88b19b2e26ec26da schema:issueNumber 6179
73 rdf:type schema:PublicationIssue
74 N54f91e5d22934ccfb15f721aaf0ffdef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Structure-Activity Relationship
76 rdf:type schema:DefinedTerm
77 N7abb8334dc6d4c18967f822483ceaf66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Thermodynamics
79 rdf:type schema:DefinedTerm
80 N7b3d5a6caf5341d69e3d7d687e9f056c schema:name nlm_unique_id
81 schema:value 0410462
82 rdf:type schema:PropertyValue
83 N86dca69674b64fe492dbe4373c44010b schema:name readcube_id
84 schema:value 4aca24deb9c1930941d2eaefd639dc3ccca061dfd885f4e2942fc3bade98ef96
85 rdf:type schema:PropertyValue
86 N9e5effded35c4d209b874d630ecc4c1c schema:name pubmed_id
87 schema:value 3165161
88 rdf:type schema:PropertyValue
89 N9ff92ded519f4481b48dd351828e9c68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Recombinant Proteins
91 rdf:type schema:DefinedTerm
92 Nbe689439b437457faafc3d97aa1762e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Surface Properties
94 rdf:type schema:DefinedTerm
95 Nc508930e8e184a35b71d4c2758d2380c schema:name dimensions_id
96 schema:value pub.1015697048
97 rdf:type schema:PropertyValue
98 Nc82f3a2031b247c991ec290b1323e7d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Genetic Engineering
100 rdf:type schema:DefinedTerm
101 Nd8271111650b44a1a8951880fdc46934 schema:volumeNumber 334
102 rdf:type schema:PublicationVolume
103 Ne0c8d29ee0414384afb648275fb2bc1b schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Ne1f79cc863e8448f9b06bbf9f7c78331 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Ions
107 rdf:type schema:DefinedTerm
108 Nff9cb1ab09044525ac3994978c7429cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name DNA Mutational Analysis
110 rdf:type schema:DefinedTerm
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biochemistry and Cell Biology
116 rdf:type schema:DefinedTerm
117 sg:journal.1018957 schema:issn 0090-0028
118 1476-4687
119 schema:name Nature
120 rdf:type schema:Periodical
121 sg:person.01062727014.41 schema:familyName Warshel
122 schema:givenName A
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062727014.41
124 rdf:type schema:Person
125 sg:person.013046106227.70 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
126 schema:familyName Hwang
127 schema:givenName J K
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046106227.70
129 rdf:type schema:Person
130 sg:pub.10.1038/328496a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033580843
131 https://doi.org/10.1038/328496a0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/328551a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029275467
134 https://doi.org/10.1038/328551a0
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/329561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023300524
137 https://doi.org/10.1038/329561a0
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/330015a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000633030
140 https://doi.org/10.1038/330015a0
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/330084a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025258300
143 https://doi.org/10.1038/330084a0
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0022-2836(84)90333-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033880362
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/s0033583500005333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053955452
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1021/bi00374a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055172685
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1021/bi00383a031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055173077
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/bi00384a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055173086
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/bi00514a028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055178941
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ja00241a072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055716986
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/ja00294a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055721063
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
162 schema:name Department of Chemistry, University of Southern California, Los Angeles 90089-0482.
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...