Why ion pair reversal by protein engineering is unlikely to succeed View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-07

AUTHORS

J K Hwang, A Warshel

ABSTRACT

Genetic engineering is a powerful tool for exploring correlations between structure and function in proteins, but as yet we are unable to use it for effective protein design. One of the most interesting examples, which would seem to be obvious, is reversing the polarity of an ion pair. Changing a positively charged protein group, that provides a strong binding for negative substrates, to a negative group is expected to provide an effective binding site for a positively charged substrate. But several recent experiments on aspartate aminotransferase, trypsin and aspartate transcarbamoylase (Schachman, H. K. personal communication) have indicated that polarity reversal is not so successful. Here we argue that the same factors that make the enzyme an effective system for the (-+) pair will make it a much less effective system for the (+-) pair. We also point out that the unusually low effective dielectric constant (epsilon approximately equal to 13) for the (-+) interaction is due to its microenvironment and this will destabilize a (+-) arrangement having an entirely different dielectric constant (epsilon approximately equal to 80). The calculations presented here evaluate the energetics of ion pairs in protein active sites on a semiquantitative level. This is particularly important when dealing with strong, functionally important interactions that are difficult to evaluate with macroscopic models. More... »

PAGES

270-272

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/334270a0

DOI

http://dx.doi.org/10.1038/334270a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015697048

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3165161


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aspartate Aminotransferases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Physical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Mutational Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Properties", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Chemistry, University of Southern California, Los Angeles 90089-0482."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "J K", 
        "id": "sg:person.013046106227.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046106227.70"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Warshel", 
        "givenName": "A", 
        "id": "sg:person.01062727014.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062727014.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/330015a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000633030", 
          "https://doi.org/10.1038/330015a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/329561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023300524", 
          "https://doi.org/10.1038/329561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330084a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025258300", 
          "https://doi.org/10.1038/330084a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328551a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029275467", 
          "https://doi.org/10.1038/328551a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328496a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033580843", 
          "https://doi.org/10.1038/328496a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(84)90333-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033880362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500005333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053955452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500005333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053955452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00374a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055172685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00383a031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055173077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00384a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055173086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00514a028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055178941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00241a072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055716986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00294a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055721063"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-07", 
    "datePublishedReg": "1988-07-01", 
    "description": "Genetic engineering is a powerful tool for exploring correlations between structure and function in proteins, but as yet we are unable to use it for effective protein design. One of the most interesting examples, which would seem to be obvious, is reversing the polarity of an ion pair. Changing a positively charged protein group, that provides a strong binding for negative substrates, to a negative group is expected to provide an effective binding site for a positively charged substrate. But several recent experiments on aspartate aminotransferase, trypsin and aspartate transcarbamoylase (Schachman, H. K. personal communication) have indicated that polarity reversal is not so successful. Here we argue that the same factors that make the enzyme an effective system for the (-+) pair will make it a much less effective system for the (+-) pair. We also point out that the unusually low effective dielectric constant (epsilon approximately equal to 13) for the (-+) interaction is due to its microenvironment and this will destabilize a (+-) arrangement having an entirely different dielectric constant (epsilon approximately equal to 80). The calculations presented here evaluate the energetics of ion pairs in protein active sites on a semiquantitative level. This is particularly important when dealing with strong, functionally important interactions that are difficult to evaluate with macroscopic models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/334270a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6179", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "334"
      }
    ], 
    "name": "Why ion pair reversal by protein engineering is unlikely to succeed", 
    "pagination": "270-272", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4aca24deb9c1930941d2eaefd639dc3ccca061dfd885f4e2942fc3bade98ef96"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3165161"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/334270a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015697048"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/334270a0", 
      "https://app.dimensions.ai/details/publication/pub.1015697048"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/334270a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/334270a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/334270a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/334270a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/334270a0'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      53 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/334270a0 schema:about N210b86936d5b4bb7bdd9a796e2d62791
2 N37ae5724ecbf49aa9628409b2bfe880b
3 N4449fe7da49d4f159c59d6b332a6994d
4 N48e0bacbf41049f1b23f34ad2bb007ea
5 N58deca8364ca4b10a49389a377147c79
6 N7e2dd5d503d34f2ab67d4dc8f4c3b5df
7 N7e9ba364dc33445d8c1ccb4e52e085bc
8 N8a75647357af4e45a8471977042cffff
9 N9988e5d7a9454971b438080697dae46d
10 Naef042a253e248a1bc1b8d0d1e467e74
11 Nc0bd771c25ea42b481eb17a234e732bb
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Nf78b6cc3673643d39046e423d5a51b73
15 schema:citation sg:pub.10.1038/328496a0
16 sg:pub.10.1038/328551a0
17 sg:pub.10.1038/329561a0
18 sg:pub.10.1038/330015a0
19 sg:pub.10.1038/330084a0
20 https://doi.org/10.1016/0022-2836(84)90333-4
21 https://doi.org/10.1017/s0033583500005333
22 https://doi.org/10.1021/bi00374a006
23 https://doi.org/10.1021/bi00383a031
24 https://doi.org/10.1021/bi00384a003
25 https://doi.org/10.1021/bi00514a028
26 https://doi.org/10.1021/ja00241a072
27 https://doi.org/10.1021/ja00294a005
28 schema:datePublished 1988-07
29 schema:datePublishedReg 1988-07-01
30 schema:description Genetic engineering is a powerful tool for exploring correlations between structure and function in proteins, but as yet we are unable to use it for effective protein design. One of the most interesting examples, which would seem to be obvious, is reversing the polarity of an ion pair. Changing a positively charged protein group, that provides a strong binding for negative substrates, to a negative group is expected to provide an effective binding site for a positively charged substrate. But several recent experiments on aspartate aminotransferase, trypsin and aspartate transcarbamoylase (Schachman, H. K. personal communication) have indicated that polarity reversal is not so successful. Here we argue that the same factors that make the enzyme an effective system for the (-+) pair will make it a much less effective system for the (+-) pair. We also point out that the unusually low effective dielectric constant (epsilon approximately equal to 13) for the (-+) interaction is due to its microenvironment and this will destabilize a (+-) arrangement having an entirely different dielectric constant (epsilon approximately equal to 80). The calculations presented here evaluate the energetics of ion pairs in protein active sites on a semiquantitative level. This is particularly important when dealing with strong, functionally important interactions that are difficult to evaluate with macroscopic models.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf Na6baf8f0a6d64404b4ee846ec9afd1fe
35 Neeef1bd26fd9475eb886f91f9230fb15
36 sg:journal.1018957
37 schema:name Why ion pair reversal by protein engineering is unlikely to succeed
38 schema:pagination 270-272
39 schema:productId N30c2d92f585e4118b654cb1a75a88fbe
40 N31fbb47d447b4fde95caec5af1fb7d7d
41 N7819bd1ce546426da72fdea2ef1d1969
42 Nb1fb9d911b2f407bb596ec6539a034a5
43 Nc3864110cb094ddf8a977c46ca8f7a83
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015697048
45 https://doi.org/10.1038/334270a0
46 schema:sdDatePublished 2019-04-10T23:11
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N61a8e34d2d124422a13851c6fb5ec0db
49 schema:url http://www.nature.com/articles/334270a0
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N210b86936d5b4bb7bdd9a796e2d62791 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Chemical Phenomena
55 rdf:type schema:DefinedTerm
56 N30c2d92f585e4118b654cb1a75a88fbe schema:name doi
57 schema:value 10.1038/334270a0
58 rdf:type schema:PropertyValue
59 N31fbb47d447b4fde95caec5af1fb7d7d schema:name nlm_unique_id
60 schema:value 0410462
61 rdf:type schema:PropertyValue
62 N37ae5724ecbf49aa9628409b2bfe880b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Binding Sites
64 rdf:type schema:DefinedTerm
65 N4449fe7da49d4f159c59d6b332a6994d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name DNA Mutational Analysis
67 rdf:type schema:DefinedTerm
68 N48e0bacbf41049f1b23f34ad2bb007ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Recombinant Proteins
70 rdf:type schema:DefinedTerm
71 N58deca8364ca4b10a49389a377147c79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Aspartate Aminotransferases
73 rdf:type schema:DefinedTerm
74 N61a8e34d2d124422a13851c6fb5ec0db schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N7819bd1ce546426da72fdea2ef1d1969 schema:name pubmed_id
77 schema:value 3165161
78 rdf:type schema:PropertyValue
79 N7e2dd5d503d34f2ab67d4dc8f4c3b5df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Surface Properties
81 rdf:type schema:DefinedTerm
82 N7e9ba364dc33445d8c1ccb4e52e085bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Genetic Engineering
84 rdf:type schema:DefinedTerm
85 N8a75647357af4e45a8471977042cffff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Ions
87 rdf:type schema:DefinedTerm
88 N9988e5d7a9454971b438080697dae46d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Structure-Activity Relationship
90 rdf:type schema:DefinedTerm
91 Na6baf8f0a6d64404b4ee846ec9afd1fe schema:volumeNumber 334
92 rdf:type schema:PublicationVolume
93 Naef042a253e248a1bc1b8d0d1e467e74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Chemistry, Physical
95 rdf:type schema:DefinedTerm
96 Nb1fb9d911b2f407bb596ec6539a034a5 schema:name dimensions_id
97 schema:value pub.1015697048
98 rdf:type schema:PropertyValue
99 Nb3ebc698d5df493e8638ce32ecfba305 rdf:first sg:person.01062727014.41
100 rdf:rest rdf:nil
101 Nc0bd771c25ea42b481eb17a234e732bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Thermodynamics
103 rdf:type schema:DefinedTerm
104 Nc3864110cb094ddf8a977c46ca8f7a83 schema:name readcube_id
105 schema:value 4aca24deb9c1930941d2eaefd639dc3ccca061dfd885f4e2942fc3bade98ef96
106 rdf:type schema:PropertyValue
107 Neeef1bd26fd9475eb886f91f9230fb15 schema:issueNumber 6179
108 rdf:type schema:PublicationIssue
109 Nf78b6cc3673643d39046e423d5a51b73 rdf:first sg:person.013046106227.70
110 rdf:rest Nb3ebc698d5df493e8638ce32ecfba305
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biochemistry and Cell Biology
116 rdf:type schema:DefinedTerm
117 sg:journal.1018957 schema:issn 0090-0028
118 1476-4687
119 schema:name Nature
120 rdf:type schema:Periodical
121 sg:person.01062727014.41 schema:familyName Warshel
122 schema:givenName A
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062727014.41
124 rdf:type schema:Person
125 sg:person.013046106227.70 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
126 schema:familyName Hwang
127 schema:givenName J K
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046106227.70
129 rdf:type schema:Person
130 sg:pub.10.1038/328496a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033580843
131 https://doi.org/10.1038/328496a0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/328551a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029275467
134 https://doi.org/10.1038/328551a0
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/329561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023300524
137 https://doi.org/10.1038/329561a0
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/330015a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000633030
140 https://doi.org/10.1038/330015a0
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/330084a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025258300
143 https://doi.org/10.1038/330084a0
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0022-2836(84)90333-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033880362
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/s0033583500005333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053955452
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1021/bi00374a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055172685
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1021/bi00383a031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055173077
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/bi00384a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055173086
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/bi00514a028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055178941
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ja00241a072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055716986
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/ja00294a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055721063
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
162 schema:name Department of Chemistry, University of Southern California, Los Angeles 90089-0482.
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...