Deactivation of macrophages by transforming growth factor-β View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1988-07

AUTHORS

Shohko Tsunawaki, Michael Sporn, Aihao Ding, Carl Nathan

ABSTRACT

Macrophage activation—enhanced capacity to kill, in a cell that otherwise mostly scavenges—is essential for host survival from infection and contributes to containment of tumours. Both microbes and tumour cells, therefore, may be under pressure to inhibit or reverse the activation of macrophages. This reasoning led to the demonstration of macrophage deactivating factors from both microbes1,2 and tumour cells3–5. In some circumstances the host itself probably requires the ability to deactivate macrophages. Macrophages are essential to the healing of wounds and repair of tissues damaged by inflammation. Yet the cytotoxic products of the activated macrophages can damage endothelium, fibroblasts, smooth muscle and parenchymal cells (reviewed in ref. 6). Thus, after an inflammatory site has been sterilized, the impact of macrophage activation on the host might shift from benefit to detriment. These concepts led us to search for macrophage deactivating effects among polypeptide growth factors that regulate angiogenesis, fibrogenesis and other aspects of tissue repair. Among 11 such factors, two proteins that are 71% similar proved to be potent macrophage deactivators: these are transforming growth factor-β1 (TGF- β1) and TGF- β2. More... »

PAGES

260-262

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/334260a0

DOI

http://dx.doi.org/10.1038/334260a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040869080

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3041283


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Products", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytokines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen Peroxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Macrophage Activation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Macrophages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen Consumption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phagocytosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transforming Growth Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Second Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, 173, Itabashi-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.264706.1", 
          "name": [
            "Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, 10021, New York, USA", 
            "Second Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, 173, Itabashi-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsunawaki", 
        "givenName": "Shohko", 
        "id": "sg:person.01024070032.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024070032.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Chemoprevention, National Cancer Institute, 20892, Bethesda, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.417768.b", 
          "name": [
            "Laboratory of Chemoprevention, National Cancer Institute, 20892, Bethesda, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sporn", 
        "givenName": "Michael", 
        "id": "sg:person.0671066537.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671066537.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, 10021, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, 10021, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Aihao", 
        "id": "sg:person.013434641457.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013434641457.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, 10021, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, 10021, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nathan", 
        "givenName": "Carl", 
        "id": "sg:person.0740455253.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740455253.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/316701a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036618381", 
          "https://doi.org/10.1038/316701a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331363a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007908605", 
          "https://doi.org/10.1038/331363a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-07", 
    "datePublishedReg": "1988-07-01", 
    "description": "Macrophage activation\u2014enhanced capacity to kill, in a cell that otherwise mostly scavenges\u2014is essential for host survival from infection and contributes to containment of tumours. Both microbes and tumour cells, therefore, may be under pressure to inhibit or reverse the activation of macrophages. This reasoning led to the demonstration of macrophage deactivating factors from both microbes1,2 and tumour cells3\u20135. In some circumstances the host itself probably requires the ability to deactivate macrophages. Macrophages are essential to the healing of wounds and repair of tissues damaged by inflammation. Yet the cytotoxic products of the activated macrophages can damage endothelium, fibroblasts, smooth muscle and parenchymal cells (reviewed in ref. 6). Thus, after an inflammatory site has been sterilized, the impact of macrophage activation on the host might shift from benefit to detriment. These concepts led us to search for macrophage deactivating effects among polypeptide growth factors that regulate angiogenesis, fibrogenesis and other aspects of tissue repair. Among 11 such factors, two proteins that are 71% similar proved to be potent macrophage deactivators: these are transforming growth factor-\u03b21 (TGF- \u03b21) and TGF- \u03b22.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/334260a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6179", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "334"
      }
    ], 
    "keywords": [
      "demonstration of macrophages", 
      "potent macrophage deactivator", 
      "growth factor", 
      "growth factor-\u03b21", 
      "factor-\u03b21", 
      "TGF-\u03b22", 
      "deactivation of macrophages", 
      "activation of macrophages", 
      "polypeptide growth factors", 
      "healing of wounds", 
      "macrophage deactivator", 
      "smooth muscle", 
      "inflammatory sites", 
      "macrophage activation", 
      "tumor cells", 
      "host survival", 
      "parenchymal cells", 
      "macrophages", 
      "cytotoxic products", 
      "tissue repair", 
      "repair of tissues", 
      "cells", 
      "repair", 
      "activation", 
      "factors", 
      "inflammation", 
      "tumors", 
      "fibrogenesis", 
      "infection", 
      "endothelium", 
      "healing", 
      "wounds", 
      "muscle", 
      "angiogenesis", 
      "survival", 
      "such factors", 
      "tissue", 
      "fibroblasts", 
      "host", 
      "microbes", 
      "cells3", 
      "scavenges", 
      "benefits", 
      "protein", 
      "effect", 
      "pressure", 
      "demonstration", 
      "ability", 
      "sites", 
      "impact", 
      "circumstances", 
      "containment", 
      "capacity", 
      "detriment", 
      "aspects", 
      "deactivator", 
      "deactivation", 
      "products", 
      "concept", 
      "reasoning", 
      "Macrophage activation\u2014enhanced capacity", 
      "activation\u2014enhanced capacity", 
      "containment of tumours", 
      "tumour cells3"
    ], 
    "name": "Deactivation of macrophages by transforming growth factor-\u03b2", 
    "pagination": "260-262", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040869080"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/334260a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3041283"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/334260a0", 
      "https://app.dimensions.ai/details/publication/pub.1040869080"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_191.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/334260a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/334260a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/334260a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/334260a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/334260a0'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      22 PREDICATES      107 URIs      97 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/334260a0 schema:about N0f6daab30df747dc9ec4a1fe5babbc61
2 N2b4e22fffcff484a9d6b28030fea8b31
3 N66c192589e2b47258d2f2c29ee565d42
4 N7213d2cef1154b4381a6a82539f4ade4
5 N9b8eb1ef02044114ab07ed567a761e58
6 Na454dd48b57e4594ba78e32cb56e5f26
7 Na6d48f0f351140dfa36982bf89d8e626
8 Nb6495171913f47f6964bc4747703b987
9 Nc3216a0e0bba4ef19b5a6e89fb56b126
10 Nd684221c60814a579658038403a19362
11 Nde53e05b34854b6ea603a6553cfa1760
12 Ne6f23917e836421ca24779778f043610
13 Nece5dfe69037445a89f368317916927f
14 Nf1deb75d7078433facc1204558cd98d8
15 anzsrc-for:06
16 anzsrc-for:0601
17 schema:author N2982284b41394b17a6ff9a39ec79d1a5
18 schema:citation sg:pub.10.1038/316701a0
19 sg:pub.10.1038/331363a0
20 schema:datePublished 1988-07
21 schema:datePublishedReg 1988-07-01
22 schema:description Macrophage activation—enhanced capacity to kill, in a cell that otherwise mostly scavenges—is essential for host survival from infection and contributes to containment of tumours. Both microbes and tumour cells, therefore, may be under pressure to inhibit or reverse the activation of macrophages. This reasoning led to the demonstration of macrophage deactivating factors from both microbes1,2 and tumour cells3–5. In some circumstances the host itself probably requires the ability to deactivate macrophages. Macrophages are essential to the healing of wounds and repair of tissues damaged by inflammation. Yet the cytotoxic products of the activated macrophages can damage endothelium, fibroblasts, smooth muscle and parenchymal cells (reviewed in ref. 6). Thus, after an inflammatory site has been sterilized, the impact of macrophage activation on the host might shift from benefit to detriment. These concepts led us to search for macrophage deactivating effects among polypeptide growth factors that regulate angiogenesis, fibrogenesis and other aspects of tissue repair. Among 11 such factors, two proteins that are 71% similar proved to be potent macrophage deactivators: these are transforming growth factor-β1 (TGF- β1) and TGF- β2.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N691ca04c78aa4e94945c85f97a3538f3
27 Nf4a6ee368feb4f5da55551929742deb3
28 sg:journal.1018957
29 schema:keywords Macrophage activation—enhanced capacity
30 TGF-β2
31 ability
32 activation
33 activation of macrophages
34 activation—enhanced capacity
35 angiogenesis
36 aspects
37 benefits
38 capacity
39 cells
40 cells3
41 circumstances
42 concept
43 containment
44 containment of tumours
45 cytotoxic products
46 deactivation
47 deactivation of macrophages
48 deactivator
49 demonstration
50 demonstration of macrophages
51 detriment
52 effect
53 endothelium
54 factor-β1
55 factors
56 fibroblasts
57 fibrogenesis
58 growth factor
59 growth factor-β1
60 healing
61 healing of wounds
62 host
63 host survival
64 impact
65 infection
66 inflammation
67 inflammatory sites
68 macrophage activation
69 macrophage deactivator
70 macrophages
71 microbes
72 muscle
73 parenchymal cells
74 polypeptide growth factors
75 potent macrophage deactivator
76 pressure
77 products
78 protein
79 reasoning
80 repair
81 repair of tissues
82 scavenges
83 sites
84 smooth muscle
85 such factors
86 survival
87 tissue
88 tissue repair
89 tumor cells
90 tumors
91 tumour cells3
92 wounds
93 schema:name Deactivation of macrophages by transforming growth factor-β
94 schema:pagination 260-262
95 schema:productId N5d7ad853f5614e899b6bbf444f65b6b8
96 N85e75a9b4e0445dda0cdb3e8bdb54e6e
97 Nf395389a59304675991c5408cec975ef
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040869080
99 https://doi.org/10.1038/334260a0
100 schema:sdDatePublished 2021-11-01T17:57
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N0e858917a0344432a46d03ad4ab3b3e8
103 schema:url https://doi.org/10.1038/334260a0
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N0e858917a0344432a46d03ad4ab3b3e8 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N0f6daab30df747dc9ec4a1fe5babbc61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Mice
111 rdf:type schema:DefinedTerm
112 N2982284b41394b17a6ff9a39ec79d1a5 rdf:first sg:person.01024070032.84
113 rdf:rest N30b2da5f569848dcb33e31c976b6c7ff
114 N2b4e22fffcff484a9d6b28030fea8b31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Oxygen Consumption
116 rdf:type schema:DefinedTerm
117 N2f8aceb0c1ce44dd9b45987d9e506da7 rdf:first sg:person.013434641457.34
118 rdf:rest N4cd8028ce6ba4ca0a303d6b32d1847b5
119 N30b2da5f569848dcb33e31c976b6c7ff rdf:first sg:person.0671066537.80
120 rdf:rest N2f8aceb0c1ce44dd9b45987d9e506da7
121 N4cd8028ce6ba4ca0a303d6b32d1847b5 rdf:first sg:person.0740455253.29
122 rdf:rest rdf:nil
123 N5d7ad853f5614e899b6bbf444f65b6b8 schema:name pubmed_id
124 schema:value 3041283
125 rdf:type schema:PropertyValue
126 N66c192589e2b47258d2f2c29ee565d42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Peptides
128 rdf:type schema:DefinedTerm
129 N691ca04c78aa4e94945c85f97a3538f3 schema:issueNumber 6179
130 rdf:type schema:PublicationIssue
131 N7213d2cef1154b4381a6a82539f4ade4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Transforming Growth Factors
133 rdf:type schema:DefinedTerm
134 N85e75a9b4e0445dda0cdb3e8bdb54e6e schema:name doi
135 schema:value 10.1038/334260a0
136 rdf:type schema:PropertyValue
137 N9b8eb1ef02044114ab07ed567a761e58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Hydrogen Peroxide
139 rdf:type schema:DefinedTerm
140 Na454dd48b57e4594ba78e32cb56e5f26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name In Vitro Techniques
142 rdf:type schema:DefinedTerm
143 Na6d48f0f351140dfa36982bf89d8e626 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Cells, Cultured
145 rdf:type schema:DefinedTerm
146 Nb6495171913f47f6964bc4747703b987 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Macrophage Activation
148 rdf:type schema:DefinedTerm
149 Nc3216a0e0bba4ef19b5a6e89fb56b126 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Biological Products
151 rdf:type schema:DefinedTerm
152 Nd684221c60814a579658038403a19362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Macrophages
154 rdf:type schema:DefinedTerm
155 Nde53e05b34854b6ea603a6553cfa1760 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Time Factors
157 rdf:type schema:DefinedTerm
158 Ne6f23917e836421ca24779778f043610 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Phagocytosis
160 rdf:type schema:DefinedTerm
161 Nece5dfe69037445a89f368317916927f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Animals
163 rdf:type schema:DefinedTerm
164 Nf1deb75d7078433facc1204558cd98d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Cytokines
166 rdf:type schema:DefinedTerm
167 Nf395389a59304675991c5408cec975ef schema:name dimensions_id
168 schema:value pub.1040869080
169 rdf:type schema:PropertyValue
170 Nf4a6ee368feb4f5da55551929742deb3 schema:volumeNumber 334
171 rdf:type schema:PublicationVolume
172 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
173 schema:name Biological Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
176 schema:name Biochemistry and Cell Biology
177 rdf:type schema:DefinedTerm
178 sg:journal.1018957 schema:issn 0028-0836
179 1476-4687
180 schema:name Nature
181 schema:publisher Springer Nature
182 rdf:type schema:Periodical
183 sg:person.01024070032.84 schema:affiliation grid-institutes:grid.264706.1
184 schema:familyName Tsunawaki
185 schema:givenName Shohko
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024070032.84
187 rdf:type schema:Person
188 sg:person.013434641457.34 schema:affiliation grid-institutes:grid.5386.8
189 schema:familyName Ding
190 schema:givenName Aihao
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013434641457.34
192 rdf:type schema:Person
193 sg:person.0671066537.80 schema:affiliation grid-institutes:grid.417768.b
194 schema:familyName Sporn
195 schema:givenName Michael
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671066537.80
197 rdf:type schema:Person
198 sg:person.0740455253.29 schema:affiliation grid-institutes:grid.5386.8
199 schema:familyName Nathan
200 schema:givenName Carl
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740455253.29
202 rdf:type schema:Person
203 sg:pub.10.1038/316701a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036618381
204 https://doi.org/10.1038/316701a0
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/331363a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007908605
207 https://doi.org/10.1038/331363a0
208 rdf:type schema:CreativeWork
209 grid-institutes:grid.264706.1 schema:alternateName Second Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, 173, Itabashi-ku, Tokyo, Japan
210 schema:name Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, 10021, New York, USA
211 Second Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, 173, Itabashi-ku, Tokyo, Japan
212 rdf:type schema:Organization
213 grid-institutes:grid.417768.b schema:alternateName Laboratory of Chemoprevention, National Cancer Institute, 20892, Bethesda, Maryland, USA
214 schema:name Laboratory of Chemoprevention, National Cancer Institute, 20892, Bethesda, Maryland, USA
215 rdf:type schema:Organization
216 grid-institutes:grid.5386.8 schema:alternateName Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, 10021, New York, USA
217 schema:name Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, 10021, New York, USA
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...