HIV-1 tat trans-activation requires the loop sequence within tar View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-07

AUTHORS

S Feng, E C Holland

ABSTRACT

Human immunodeficiency virus (HIV-1) is the primary retroviral agent responsible for AIDS and related disorders worldwide. One of its identified gene products, tat protein, stimulates in trans the expression of all HIV-1 genes by several orders of magnitude. Cells infected with HIV-1 require tat protein to produce virus, suggesting that trans-activation is crucial for viral replication. The essential cis-acting site for trans-activation, termed tar, resides within the R region of the HIV-1 long terminal repeat (LTR), between -17 and +54 with respect to the initiation site of viral transcription. It is striking that the RNA encoded between +1 and +59 has the potential to form an extensive stem-loop secondary structure which, as a portion of the untranslated leader RNA, would be common to all HIV-1 mRNAs. We now present the results of nucleotide substitution experiments which suggest that tat trans-activation requires presentation of the sequence +30CUGGG+34 in tar within the loop of a RNA hairpin structure. More... »

PAGES

165-167

Journal

TITLE

Nature

ISSUE

6178

VOLUME

334

Author Affiliations

Related Patents

  • Reagents And Methods For Modulating Gene Expression Through Rna Mimicry
  • Mutant Tar Virus And Transdominant Tat Mutants As Pharmacological Agents
  • Oncolytic Rhabdovirus
  • Methods And Compositions Relating To Improved Lentiviral Vector Production Systems
  • Methods And Compositions Relating To Improved Lentiviral Vector Production Systems
  • Methods And Compositions Relating To Restricted Expression Lentiviral Vectors And Their Applications
  • Method Of Intracellular Binding Of Target Molecules
  • Methods And Compositions Relating To Improved Lentiviral Vectors And Their Applications
  • Methods And Compositions Relating To Improved Lentiviral Vectors And Their Applications
  • Methods And Compositions Relating To Improved Lentiviral Vectors And Their Applications
  • Method Of Intracellular Binding Of Target Molecules
  • Antisense Inhibitors Of The Human Immunodeficiency Virus
  • Methods And Compositions Relating To Improved Lentiviral Vectors And Their Applications
  • Transdominant Tat Mutants And Uses Thereof
  • Methods And Compositions Relating To Restricted Expression Lentiviral Vectors And Their Applications
  • Molecular Interaction Sites Of Interleukin-2 Rna And Methods Of Modulating The Same
  • Oncolytic Rhabdovirus
  • Systemic Treatment Of Metastatic And/Or Systemically-Disseminated Cancers Using Gm-Csf-Expressing Poxviruses
  • Compositions And Methods For Glioblastoma Treatment
  • Methods And Compositions Relating To Improved Lentiviral Vector Production Systems
  • Cold-Adapted Influenza Virus
  • Compositions, Methods And Kits Based On Small Nuclear Rnas
  • Reagents And Methods For Modulating Gene Expression Through Rna Mimicry
  • Rna Oligonucleotides That Bind Hiv Tat Protein
  • Compositions And Methods Relating To Transdominant Tat Mutants
  • Methods And Compositions Relating To Restricted Expression Lentiviral Vectors And Their Applications
  • Nucleolar Targeting Of Therapeutics Against Hiv
  • Oncolytic Vaccinia Virus Combination Cancer Therapy
  • Methods And Compositions Relating To Improved Lentiviral Vectors And Their Applications
  • Nucleolar Targeting Of Therapeutics Against Hiv
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/334165a0

    DOI

    http://dx.doi.org/10.1038/334165a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009555448

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/3386755


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Mutational Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "HIV", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Viral", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regulatory Sequences, Nucleic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retroviridae Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Biochemistry, Stanford University Medical Center, California 94305."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "S", 
            "type": "Person"
          }, 
          {
            "familyName": "Holland", 
            "givenName": "E C", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/319555a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002116396", 
              "https://doi.org/10.1038/319555a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(87)90247-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002460754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/328548a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003756934", 
              "https://doi.org/10.1038/328548a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/332551a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007711865", 
              "https://doi.org/10.1038/332551a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(86)90696-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009364099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/326662a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012633216", 
              "https://doi.org/10.1038/326662a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(85)80062-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013475796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(86)90017-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023594794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/320367a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024975907", 
              "https://doi.org/10.1038/320367a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/330489a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026049650", 
              "https://doi.org/10.1038/330489a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(86)90363-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035132788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(86)90062-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051026940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2981427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062579136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2990040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062580015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2990041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062580016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1987.tb02710.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079413675"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1988-07", 
        "datePublishedReg": "1988-07-01", 
        "description": "Human immunodeficiency virus (HIV-1) is the primary retroviral agent responsible for AIDS and related disorders worldwide. One of its identified gene products, tat protein, stimulates in trans the expression of all HIV-1 genes by several orders of magnitude. Cells infected with HIV-1 require tat protein to produce virus, suggesting that trans-activation is crucial for viral replication. The essential cis-acting site for trans-activation, termed tar, resides within the R region of the HIV-1 long terminal repeat (LTR), between -17 and +54 with respect to the initiation site of viral transcription. It is striking that the RNA encoded between +1 and +59 has the potential to form an extensive stem-loop secondary structure which, as a portion of the untranslated leader RNA, would be common to all HIV-1 mRNAs. We now present the results of nucleotide substitution experiments which suggest that tat trans-activation requires presentation of the sequence +30CUGGG+34 in tar within the loop of a RNA hairpin structure.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/334165a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6178", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "334"
          }
        ], 
        "name": "HIV-1 tat trans-activation requires the loop sequence within tar", 
        "pagination": "165-167", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2d84c3654b4d451272c2c849ca4fbad4428825b85c9c3664798a1dd0893fc614"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "3386755"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/334165a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009555448"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/334165a0", 
          "https://app.dimensions.ai/details/publication/pub.1009555448"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000422.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/334165a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/334165a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/334165a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/334165a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/334165a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    159 TRIPLES      21 PREDICATES      53 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/334165a0 schema:about N02fee46ba8d2465ea7cff77e86ec521c
    2 N207c7adaea9f46a5bae19a4a52faecb3
    3 N5b76826907f54d6bbe6e5778e7cce848
    4 N6ab0c0342909454caa8199ddadbcc325
    5 N7cb675d208e3490aaa65d8e2ed8e1ab9
    6 N861051e987f541f9874beeeaaaec141c
    7 N87cf73ac34944e908f62ff3d3914bcd5
    8 Nf24e38011ace4b548c656ef6accb5a38
    9 anzsrc-for:11
    10 anzsrc-for:1108
    11 schema:author Ne6f703b25d0e4b069a4a09c3112a5d70
    12 schema:citation sg:pub.10.1038/319555a0
    13 sg:pub.10.1038/320367a0
    14 sg:pub.10.1038/326662a0
    15 sg:pub.10.1038/328548a0
    16 sg:pub.10.1038/330489a0
    17 sg:pub.10.1038/332551a0
    18 https://doi.org/10.1002/j.1460-2075.1987.tb02710.x
    19 https://doi.org/10.1016/0092-8674(86)90017-6
    20 https://doi.org/10.1016/0092-8674(86)90062-0
    21 https://doi.org/10.1016/0092-8674(86)90363-6
    22 https://doi.org/10.1016/0092-8674(86)90696-3
    23 https://doi.org/10.1016/0092-8674(87)90247-9
    24 https://doi.org/10.1016/s0092-8674(85)80062-3
    25 https://doi.org/10.1126/science.2981427
    26 https://doi.org/10.1126/science.2990040
    27 https://doi.org/10.1126/science.2990041
    28 schema:datePublished 1988-07
    29 schema:datePublishedReg 1988-07-01
    30 schema:description Human immunodeficiency virus (HIV-1) is the primary retroviral agent responsible for AIDS and related disorders worldwide. One of its identified gene products, tat protein, stimulates in trans the expression of all HIV-1 genes by several orders of magnitude. Cells infected with HIV-1 require tat protein to produce virus, suggesting that trans-activation is crucial for viral replication. The essential cis-acting site for trans-activation, termed tar, resides within the R region of the HIV-1 long terminal repeat (LTR), between -17 and +54 with respect to the initiation site of viral transcription. It is striking that the RNA encoded between +1 and +59 has the potential to form an extensive stem-loop secondary structure which, as a portion of the untranslated leader RNA, would be common to all HIV-1 mRNAs. We now present the results of nucleotide substitution experiments which suggest that tat trans-activation requires presentation of the sequence +30CUGGG+34 in tar within the loop of a RNA hairpin structure.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N858756c939c542479e659e1fb80709c3
    35 Nb0336edc567d47daaba1b46e9157f513
    36 sg:journal.1018957
    37 schema:name HIV-1 tat trans-activation requires the loop sequence within tar
    38 schema:pagination 165-167
    39 schema:productId N1eb232d66cad4ebebab90e4d1103f61b
    40 N3abd0ca1b1834dfcb445b28f9a081357
    41 N3eb9b2b094774ba8af747d49c4f59615
    42 N7b70fcd48c814d62bbfec42fa670e11e
    43 Ncb02cc2d425a40dfbe7508aa86f2e3f4
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009555448
    45 https://doi.org/10.1038/334165a0
    46 schema:sdDatePublished 2019-04-10T20:34
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N3a148091398142a89c5e78d8b564878a
    49 schema:url http://www.nature.com/articles/334165a0
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N02fee46ba8d2465ea7cff77e86ec521c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    54 schema:name DNA Mutational Analysis
    55 rdf:type schema:DefinedTerm
    56 N1eb232d66cad4ebebab90e4d1103f61b schema:name doi
    57 schema:value 10.1038/334165a0
    58 rdf:type schema:PropertyValue
    59 N207c7adaea9f46a5bae19a4a52faecb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    60 schema:name HIV
    61 rdf:type schema:DefinedTerm
    62 N3a148091398142a89c5e78d8b564878a schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N3abd0ca1b1834dfcb445b28f9a081357 schema:name nlm_unique_id
    65 schema:value 0410462
    66 rdf:type schema:PropertyValue
    67 N3eb9b2b094774ba8af747d49c4f59615 schema:name readcube_id
    68 schema:value 2d84c3654b4d451272c2c849ca4fbad4428825b85c9c3664798a1dd0893fc614
    69 rdf:type schema:PropertyValue
    70 N5b76826907f54d6bbe6e5778e7cce848 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Retroviridae Proteins
    72 rdf:type schema:DefinedTerm
    73 N6ab0c0342909454caa8199ddadbcc325 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Gene Expression Regulation
    75 rdf:type schema:DefinedTerm
    76 N7b70fcd48c814d62bbfec42fa670e11e schema:name pubmed_id
    77 schema:value 3386755
    78 rdf:type schema:PropertyValue
    79 N7cb675d208e3490aaa65d8e2ed8e1ab9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Regulatory Sequences, Nucleic Acid
    81 rdf:type schema:DefinedTerm
    82 N858756c939c542479e659e1fb80709c3 schema:volumeNumber 334
    83 rdf:type schema:PublicationVolume
    84 N861051e987f541f9874beeeaaaec141c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Transcription Factors
    86 rdf:type schema:DefinedTerm
    87 N87cf73ac34944e908f62ff3d3914bcd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Nucleic Acid Conformation
    89 rdf:type schema:DefinedTerm
    90 N9be8f51a77684bc5a6e50500f98f7888 schema:familyName Holland
    91 schema:givenName E C
    92 rdf:type schema:Person
    93 Nb0336edc567d47daaba1b46e9157f513 schema:issueNumber 6178
    94 rdf:type schema:PublicationIssue
    95 Nb7f75e0c420f4160b50061abe5d026e4 rdf:first N9be8f51a77684bc5a6e50500f98f7888
    96 rdf:rest rdf:nil
    97 Ncb02cc2d425a40dfbe7508aa86f2e3f4 schema:name dimensions_id
    98 schema:value pub.1009555448
    99 rdf:type schema:PropertyValue
    100 Ne56c6997cf6249f4adf6780cdf98ad90 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    101 schema:familyName Feng
    102 schema:givenName S
    103 rdf:type schema:Person
    104 Ne6f703b25d0e4b069a4a09c3112a5d70 rdf:first Ne56c6997cf6249f4adf6780cdf98ad90
    105 rdf:rest Nb7f75e0c420f4160b50061abe5d026e4
    106 Nf24e38011ace4b548c656ef6accb5a38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name RNA, Viral
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Medical and Health Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Medical Microbiology
    114 rdf:type schema:DefinedTerm
    115 sg:journal.1018957 schema:issn 0090-0028
    116 1476-4687
    117 schema:name Nature
    118 rdf:type schema:Periodical
    119 sg:pub.10.1038/319555a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002116396
    120 https://doi.org/10.1038/319555a0
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1038/320367a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024975907
    123 https://doi.org/10.1038/320367a0
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1038/326662a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012633216
    126 https://doi.org/10.1038/326662a0
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1038/328548a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003756934
    129 https://doi.org/10.1038/328548a0
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1038/330489a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026049650
    132 https://doi.org/10.1038/330489a0
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1038/332551a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007711865
    135 https://doi.org/10.1038/332551a0
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1002/j.1460-2075.1987.tb02710.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079413675
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/0092-8674(86)90017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023594794
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/0092-8674(86)90062-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051026940
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/0092-8674(86)90363-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035132788
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/0092-8674(86)90696-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009364099
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/0092-8674(87)90247-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002460754
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/s0092-8674(85)80062-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013475796
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1126/science.2981427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062579136
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1126/science.2990040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062580015
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1126/science.2990041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062580016
    156 rdf:type schema:CreativeWork
    157 https://www.grid.ac/institutes/grid.240952.8 schema:alternateName Stanford Medicine
    158 schema:name Department of Biochemistry, Stanford University Medical Center, California 94305.
    159 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...