Force measurements by micromanipulation of a single actin filament by glass needles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-07

AUTHORS

Akiyoshi Kishino, Toshio Yanagida

ABSTRACT

Single actin filaments (∼7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1–5. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin–phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction. More... »

PAGES

74-76

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/334074a0

DOI

http://dx.doi.org/10.1038/334074a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050990343

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3386748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actin Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Micromanipulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myosins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phalloidine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tensile Strength", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishino", 
        "givenName": "Akiyoshi", 
        "id": "sg:person.01126266074.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126266074.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagida", 
        "givenName": "Toshio", 
        "id": "sg:person.015141357621.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/326805a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040356440", 
          "https://doi.org/10.1038/326805a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/293566a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012256858", 
          "https://doi.org/10.1038/293566a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/299557a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009437004", 
          "https://doi.org/10.1038/299557a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/307058a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053227057", 
          "https://doi.org/10.1038/307058a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328536a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048739855", 
          "https://doi.org/10.1038/328536a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331450a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037683349", 
          "https://doi.org/10.1038/331450a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/303031a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001820998", 
          "https://doi.org/10.1038/303031a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-07", 
    "datePublishedReg": "1988-07-01", 
    "description": "Single actin filaments (\u223c7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1\u20135. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin\u2013phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/334074a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6177", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "334"
      }
    ], 
    "keywords": [
      "external forces", 
      "single actin filaments", 
      "average force", 
      "single filament", 
      "first results", 
      "force", 
      "motion", 
      "force measurements", 
      "solution", 
      "technique", 
      "filaments", 
      "measurements", 
      "further development", 
      "magnitude", 
      "strength", 
      "conditions", 
      "results", 
      "surface", 
      "micromanipulation", 
      "glass surface", 
      "isometric contraction", 
      "glass microneedle", 
      "second measurement", 
      "thin filaments", 
      "presence", 
      "contraction", 
      "muscle fibers", 
      "actin filaments", 
      "glass needle", 
      "single thin filaments", 
      "development", 
      "proteolytic fragments", 
      "myosin heads", 
      "head", 
      "muscle", 
      "microscopy1", 
      "myosin", 
      "presence of ATP", 
      "fibers", 
      "fluorescent phalloidin", 
      "needle", 
      "ATP", 
      "phalloidin", 
      "microneedles", 
      "tropomyosin", 
      "tensile strength", 
      "intact myosin", 
      "method", 
      "complexes", 
      "fragments", 
      "heads of myosin"
    ], 
    "name": "Force measurements by micromanipulation of a single actin filament by glass needles", 
    "pagination": "74-76", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050990343"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/334074a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3386748"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/334074a0", 
      "https://app.dimensions.ai/details/publication/pub.1050990343"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_206.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/334074a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/334074a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/334074a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/334074a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/334074a0'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      95 URIs      80 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/334074a0 schema:about N09436e42269345cfafdaf15b13f94975
2 N1089149b8b1e4edc95d30e34cb4e4c46
3 N385df643600d4fe087c03232fb165a78
4 N4683789157db4747af40641dec494fb5
5 N54d850fe82844c03a07c586cfcacd4a7
6 N89d40eafbbf3429c99905e263f2abf8d
7 N90d4179af63045d8ac377b45053fcb7f
8 N9cb4435525814ad58bbe4a5a242643b3
9 Nb3df47d4ed3b4a5cb39ac0d4e4d97f41
10 Ncddf5b53ddaa4a47bd1c77c8c8988332
11 Ne37ef1d1787a4181970e8a2955907bdf
12 anzsrc-for:03
13 anzsrc-for:0306
14 schema:author N04290ecd0a254f38b917aded3a9af813
15 schema:citation sg:pub.10.1038/293566a0
16 sg:pub.10.1038/299557a0
17 sg:pub.10.1038/303031a0
18 sg:pub.10.1038/307058a0
19 sg:pub.10.1038/326805a0
20 sg:pub.10.1038/328536a0
21 sg:pub.10.1038/331450a0
22 schema:datePublished 1988-07
23 schema:datePublishedReg 1988-07-01
24 schema:description Single actin filaments (∼7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1–5. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin–phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N30ebf265316f4e7f86df2c3d9e11199f
28 Nd13976c33c284e6eba3d691309a8adc3
29 sg:journal.1018957
30 schema:keywords ATP
31 actin filaments
32 average force
33 complexes
34 conditions
35 contraction
36 development
37 external forces
38 fibers
39 filaments
40 first results
41 fluorescent phalloidin
42 force
43 force measurements
44 fragments
45 further development
46 glass microneedle
47 glass needle
48 glass surface
49 head
50 heads of myosin
51 intact myosin
52 isometric contraction
53 magnitude
54 measurements
55 method
56 micromanipulation
57 microneedles
58 microscopy1
59 motion
60 muscle
61 muscle fibers
62 myosin
63 myosin heads
64 needle
65 phalloidin
66 presence
67 presence of ATP
68 proteolytic fragments
69 results
70 second measurement
71 single actin filaments
72 single filament
73 single thin filaments
74 solution
75 strength
76 surface
77 technique
78 tensile strength
79 thin filaments
80 tropomyosin
81 schema:name Force measurements by micromanipulation of a single actin filament by glass needles
82 schema:pagination 74-76
83 schema:productId Na2cbb3d0e68542edbd0fe5eefa3dd339
84 Nb7c8428a5f2444889fb4c17bce823712
85 Ne832f5fe5ef346da8d638424fb1e3852
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050990343
87 https://doi.org/10.1038/334074a0
88 schema:sdDatePublished 2022-09-02T15:46
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Naa4cc76b5d304b858ae94e6af4710e8f
91 schema:url https://doi.org/10.1038/334074a0
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N04290ecd0a254f38b917aded3a9af813 rdf:first sg:person.01126266074.46
96 rdf:rest N6b65e3d426264c0f92fcceed9b885742
97 N09436e42269345cfafdaf15b13f94975 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Cytoskeleton
99 rdf:type schema:DefinedTerm
100 N1089149b8b1e4edc95d30e34cb4e4c46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Elasticity
102 rdf:type schema:DefinedTerm
103 N30ebf265316f4e7f86df2c3d9e11199f schema:issueNumber 6177
104 rdf:type schema:PublicationIssue
105 N385df643600d4fe087c03232fb165a78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Tensile Strength
107 rdf:type schema:DefinedTerm
108 N4683789157db4747af40641dec494fb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Muscles
110 rdf:type schema:DefinedTerm
111 N54d850fe82844c03a07c586cfcacd4a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Animals
113 rdf:type schema:DefinedTerm
114 N6b65e3d426264c0f92fcceed9b885742 rdf:first sg:person.015141357621.93
115 rdf:rest rdf:nil
116 N89d40eafbbf3429c99905e263f2abf8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Micromanipulation
118 rdf:type schema:DefinedTerm
119 N90d4179af63045d8ac377b45053fcb7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Glass
121 rdf:type schema:DefinedTerm
122 N9cb4435525814ad58bbe4a5a242643b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Phalloidine
124 rdf:type schema:DefinedTerm
125 Na2cbb3d0e68542edbd0fe5eefa3dd339 schema:name doi
126 schema:value 10.1038/334074a0
127 rdf:type schema:PropertyValue
128 Naa4cc76b5d304b858ae94e6af4710e8f schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Nb3df47d4ed3b4a5cb39ac0d4e4d97f41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Myosins
132 rdf:type schema:DefinedTerm
133 Nb7c8428a5f2444889fb4c17bce823712 schema:name dimensions_id
134 schema:value pub.1050990343
135 rdf:type schema:PropertyValue
136 Ncddf5b53ddaa4a47bd1c77c8c8988332 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Actins
138 rdf:type schema:DefinedTerm
139 Nd13976c33c284e6eba3d691309a8adc3 schema:volumeNumber 334
140 rdf:type schema:PublicationVolume
141 Ne37ef1d1787a4181970e8a2955907bdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Actin Cytoskeleton
143 rdf:type schema:DefinedTerm
144 Ne832f5fe5ef346da8d638424fb1e3852 schema:name pubmed_id
145 schema:value 3386748
146 rdf:type schema:PropertyValue
147 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
148 schema:name Chemical Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
151 schema:name Physical Chemistry (incl. Structural)
152 rdf:type schema:DefinedTerm
153 sg:journal.1018957 schema:issn 0028-0836
154 1476-4687
155 schema:name Nature
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01126266074.46 schema:affiliation grid-institutes:grid.136593.b
159 schema:familyName Kishino
160 schema:givenName Akiyoshi
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126266074.46
162 rdf:type schema:Person
163 sg:person.015141357621.93 schema:affiliation grid-institutes:grid.136593.b
164 schema:familyName Yanagida
165 schema:givenName Toshio
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93
167 rdf:type schema:Person
168 sg:pub.10.1038/293566a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012256858
169 https://doi.org/10.1038/293566a0
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/299557a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009437004
172 https://doi.org/10.1038/299557a0
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/303031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001820998
175 https://doi.org/10.1038/303031a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/307058a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053227057
178 https://doi.org/10.1038/307058a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/326805a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040356440
181 https://doi.org/10.1038/326805a0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/328536a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048739855
184 https://doi.org/10.1038/328536a0
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/331450a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037683349
187 https://doi.org/10.1038/331450a0
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.136593.b schema:alternateName Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
190 schema:name Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...