Force measurements by micromanipulation of a single actin filament by glass needles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-07

AUTHORS

Akiyoshi Kishino, Toshio Yanagida

ABSTRACT

Single actin filaments (∼7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1–5. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin–phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction. More... »

PAGES

74-76

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/334074a0

DOI

http://dx.doi.org/10.1038/334074a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050990343

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3386748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actin Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Micromanipulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myosins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phalloidine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tensile Strength", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishino", 
        "givenName": "Akiyoshi", 
        "id": "sg:person.01126266074.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126266074.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagida", 
        "givenName": "Toshio", 
        "id": "sg:person.015141357621.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/293566a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012256858", 
          "https://doi.org/10.1038/293566a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/303031a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001820998", 
          "https://doi.org/10.1038/303031a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/299557a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009437004", 
          "https://doi.org/10.1038/299557a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/326805a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040356440", 
          "https://doi.org/10.1038/326805a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/307058a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053227057", 
          "https://doi.org/10.1038/307058a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331450a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037683349", 
          "https://doi.org/10.1038/331450a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328536a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048739855", 
          "https://doi.org/10.1038/328536a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-07", 
    "datePublishedReg": "1988-07-01", 
    "description": "Single actin filaments (\u223c7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1\u20135. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin\u2013phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/334074a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6177", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "334"
      }
    ], 
    "keywords": [
      "external forces", 
      "single actin filaments", 
      "average force", 
      "single filament", 
      "first results", 
      "force", 
      "motion", 
      "force measurements", 
      "solution", 
      "technique", 
      "filaments", 
      "measurements", 
      "further development", 
      "magnitude", 
      "strength", 
      "conditions", 
      "results", 
      "surface", 
      "micromanipulation", 
      "glass surface", 
      "isometric contraction", 
      "glass microneedle", 
      "second measurement", 
      "thin filaments", 
      "presence", 
      "contraction", 
      "muscle fibers", 
      "actin filaments", 
      "glass needle", 
      "single thin filaments", 
      "development", 
      "proteolytic fragments", 
      "myosin heads", 
      "head", 
      "muscle", 
      "microscopy1", 
      "myosin", 
      "presence of ATP", 
      "fibers", 
      "fluorescent phalloidin", 
      "needle", 
      "ATP", 
      "phalloidin", 
      "microneedles", 
      "tropomyosin", 
      "tensile strength", 
      "intact myosin", 
      "method", 
      "complexes", 
      "fragments", 
      "heads of myosin"
    ], 
    "name": "Force measurements by micromanipulation of a single actin filament by glass needles", 
    "pagination": "74-76", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050990343"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/334074a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3386748"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/334074a0", 
      "https://app.dimensions.ai/details/publication/pub.1050990343"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_203.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/334074a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/334074a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/334074a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/334074a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/334074a0'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      95 URIs      80 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/334074a0 schema:about N0698b80870fe4982a9e1ab6939dfe02e
2 N102aea693a4a4d4582ff29ab68e8746f
3 N29a754bbb7104f2d95961eaaa9389d46
4 N30c1ebe02fa0492aa6fafd962c3e33d3
5 N5c243e1e1a48458d9f35a964fe133a2a
6 N62b2c26696a0461e8a0a37546c88fbca
7 Nbdf33f88185c4a539fc2a99288a376ee
8 Ncb98ac78cd1e41d0babf5f6056247964
9 Ndf49b97b3fc9437190a71195d2e5a187
10 Ne2d8d86c9ca24e2a860ff1cf9dd6416f
11 Nf3f8c315154a44c8bcb6b6527fd26b71
12 anzsrc-for:03
13 anzsrc-for:0306
14 schema:author N06cf02a323e44a4b8c01288b0adeb010
15 schema:citation sg:pub.10.1038/293566a0
16 sg:pub.10.1038/299557a0
17 sg:pub.10.1038/303031a0
18 sg:pub.10.1038/307058a0
19 sg:pub.10.1038/326805a0
20 sg:pub.10.1038/328536a0
21 sg:pub.10.1038/331450a0
22 schema:datePublished 1988-07
23 schema:datePublishedReg 1988-07-01
24 schema:description Single actin filaments (∼7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1–5. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin–phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N419d10cc53ae463aa59989be874019e5
28 N73750638850a43759a048bc6daef4c1d
29 sg:journal.1018957
30 schema:keywords ATP
31 actin filaments
32 average force
33 complexes
34 conditions
35 contraction
36 development
37 external forces
38 fibers
39 filaments
40 first results
41 fluorescent phalloidin
42 force
43 force measurements
44 fragments
45 further development
46 glass microneedle
47 glass needle
48 glass surface
49 head
50 heads of myosin
51 intact myosin
52 isometric contraction
53 magnitude
54 measurements
55 method
56 micromanipulation
57 microneedles
58 microscopy1
59 motion
60 muscle
61 muscle fibers
62 myosin
63 myosin heads
64 needle
65 phalloidin
66 presence
67 presence of ATP
68 proteolytic fragments
69 results
70 second measurement
71 single actin filaments
72 single filament
73 single thin filaments
74 solution
75 strength
76 surface
77 technique
78 tensile strength
79 thin filaments
80 tropomyosin
81 schema:name Force measurements by micromanipulation of a single actin filament by glass needles
82 schema:pagination 74-76
83 schema:productId N0f9a4621de054dca9fdcc50132f1e874
84 N4c46051011e745b7a6c3b9c850a374ba
85 Nf0360117478f46ebbbf98a4abbdd55c9
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050990343
87 https://doi.org/10.1038/334074a0
88 schema:sdDatePublished 2022-12-01T06:19
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N3987f6d26bf14839b903cd79b5365a3c
91 schema:url https://doi.org/10.1038/334074a0
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N0698b80870fe4982a9e1ab6939dfe02e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Tensile Strength
97 rdf:type schema:DefinedTerm
98 N06cf02a323e44a4b8c01288b0adeb010 rdf:first sg:person.01126266074.46
99 rdf:rest N0ff5c58fbf4e47c8909fc13a661c347e
100 N0f9a4621de054dca9fdcc50132f1e874 schema:name dimensions_id
101 schema:value pub.1050990343
102 rdf:type schema:PropertyValue
103 N0ff5c58fbf4e47c8909fc13a661c347e rdf:first sg:person.015141357621.93
104 rdf:rest rdf:nil
105 N102aea693a4a4d4582ff29ab68e8746f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Phalloidine
107 rdf:type schema:DefinedTerm
108 N29a754bbb7104f2d95961eaaa9389d46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Micromanipulation
110 rdf:type schema:DefinedTerm
111 N30c1ebe02fa0492aa6fafd962c3e33d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Glass
113 rdf:type schema:DefinedTerm
114 N3987f6d26bf14839b903cd79b5365a3c schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N419d10cc53ae463aa59989be874019e5 schema:issueNumber 6177
117 rdf:type schema:PublicationIssue
118 N4c46051011e745b7a6c3b9c850a374ba schema:name pubmed_id
119 schema:value 3386748
120 rdf:type schema:PropertyValue
121 N5c243e1e1a48458d9f35a964fe133a2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Animals
123 rdf:type schema:DefinedTerm
124 N62b2c26696a0461e8a0a37546c88fbca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Muscles
126 rdf:type schema:DefinedTerm
127 N73750638850a43759a048bc6daef4c1d schema:volumeNumber 334
128 rdf:type schema:PublicationVolume
129 Nbdf33f88185c4a539fc2a99288a376ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Elasticity
131 rdf:type schema:DefinedTerm
132 Ncb98ac78cd1e41d0babf5f6056247964 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cytoskeleton
134 rdf:type schema:DefinedTerm
135 Ndf49b97b3fc9437190a71195d2e5a187 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Actin Cytoskeleton
137 rdf:type schema:DefinedTerm
138 Ne2d8d86c9ca24e2a860ff1cf9dd6416f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Actins
140 rdf:type schema:DefinedTerm
141 Nf0360117478f46ebbbf98a4abbdd55c9 schema:name doi
142 schema:value 10.1038/334074a0
143 rdf:type schema:PropertyValue
144 Nf3f8c315154a44c8bcb6b6527fd26b71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Myosins
146 rdf:type schema:DefinedTerm
147 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
148 schema:name Chemical Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
151 schema:name Physical Chemistry (incl. Structural)
152 rdf:type schema:DefinedTerm
153 sg:journal.1018957 schema:issn 0028-0836
154 1476-4687
155 schema:name Nature
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01126266074.46 schema:affiliation grid-institutes:grid.136593.b
159 schema:familyName Kishino
160 schema:givenName Akiyoshi
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126266074.46
162 rdf:type schema:Person
163 sg:person.015141357621.93 schema:affiliation grid-institutes:grid.136593.b
164 schema:familyName Yanagida
165 schema:givenName Toshio
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93
167 rdf:type schema:Person
168 sg:pub.10.1038/293566a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012256858
169 https://doi.org/10.1038/293566a0
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/299557a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009437004
172 https://doi.org/10.1038/299557a0
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/303031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001820998
175 https://doi.org/10.1038/303031a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/307058a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053227057
178 https://doi.org/10.1038/307058a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/326805a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040356440
181 https://doi.org/10.1038/326805a0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/328536a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048739855
184 https://doi.org/10.1038/328536a0
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/331450a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037683349
187 https://doi.org/10.1038/331450a0
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.136593.b schema:alternateName Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
190 schema:name Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...