An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-06

AUTHORS

Alexander R. van der Krol, Peter E. Lenting, Jetty Veenstra, Ingrid M. van der Meer, Ronald E. Koes, Anton G. M. Gerats, Joseph N. M. Mol, Antoine R. Stuitje

ABSTRACT

In most plants flower pigments derive from the flavonoid biosynthesis pathway. Consistent with this pathway in Petunia hybrida the key enzyme in flavonoid synthesis, chalcone synthase, is synthesized in the flower corolla, tube and anthers1. Here we show that constitutive expression of an 'anti-sense' chalcone synthase gene in transgenic petunia and tobacco plants results, with high frequency, in an altered flower pigmentation due to a reduction in levels of both the messenger RNA for the enzyme and the enzyme itself. The pattern of pigmentation varies among flowers of different transgenic plants, indicating that the activity of the anti-sense gene is influenced by DNA sequences that border its site of insertion in both a quantitative and a qualitative way. Backcrossing experiments show that the different pigmentation phenotypes resulting from the expression of anti-sense chalcone synthese gene(s) are stably inherited. These data establish that secondary metabolism in plants can be manipulated using transgenic plants that constitutively synthesize anti-sense RNA. More... »

PAGES

866-869

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6176

VOLUME

333

Related Patents

  • Tobacco Products With Reduced Nicotine
  • Cytoplasmic Inhibition Of Gene Expression By Viral Rna
  • Nucleic Acid Encoding Delta-9 Desaturase
  • Genetically Engineered Modification Of Potato To Form Amylopectin-Type Starch
  • Papaya Ringspot Virus Nia Protease Gene
  • Nucleotide Sequences Mediating Fertility And Method Of Using Same
  • Genetically Engineered Plant Cells And Plants, As Well As Recombinant Dna Suitable Therefor
  • Genetic Engineering Of Syringyl-Enriched Lignin In Plants
  • Transgenic Plants And Method For Transforming Carnations
  • Method And Medicament For Inhibiting The Expression Of A Given Gene
  • Tobacco Inbred And Hybrid Plants And Tobacco Products Made Thereof
  • Regulation Of Peroxisomal Fatty Acid Transport In Plants
  • Cloning Of Cytochrome P450 Genes From Nicotiana
  • Tobacco Inbred Plants Ncbex1f, Ncbex1ms, And Nc Ex90
  • Regulation Of Quinolate Phosphoribosyl Transferase Expression
  • Plant Promoter Sequence
  • Plants Resistant To Cucumber Mosaic Virus Strain V34
  • Flavonoid 3′,5′ Hydroxylase Gene Sequences And Uses Therefor
  • Tobacco Plants Having Reduced Nicotine Demethylase Activity
  • Method For Producing Rose With Altered Petal Colors
  • Alteration Of Tobacco Alkaloid Content Through Modification Of Specific Cytochrome P450 Genes
  • Alteration Of Tobacco Alkaloid Content Through Modification Of Specific Cytochrome P450 Genes
  • Tobacco Products With Increased Nicotine
  • Nucleotide Sequences Mediating Fertility And Method Of Using Same
  • Papaya Ringspot Virus Protease Gene
  • Cytoplasmic Inhibition Of Gene Expression
  • Tobacco Nicotine Demethylase Genomic Clone And Uses Thereof
  • Methods For Modifying Plant Endosperm
  • Regulation Of Quinolate Phosphoribosyl Transferase Expression By Transformation With A Tobacco Quinolate Phosphoribosyl Transferase Nucleic Acid
  • Hd3a Gene Inducing Flowering Of Plant And Utilization Thereof
  • Plant Photoperiod Sensitivity Gene Hd1 And Use Of The Same
  • Methods And Compositions For Protein Production In Tobacco Plants With Reduced Nicotine
  • Cytoplasmic Inhibition Of Gene Expression
  • Method And Medicament For Inhibiting The Expression Of A Given Gene
  • Alteration Of Tobacco Alkaloid Content Through Modification Of Specific Cytochrome P450 Genes
  • Alteration Of Tobacco Alkaloid Content Through Modification Of Specific Cytochrome P450 Genes
  • Nicotiana Nucleic Acid Molecules And Uses Thereof
  • Nicotiana Nucleic Acid Molecules And Uses Thereof
  • Tobacco Inbred And Hybrid Plants And Uses Thereof
  • Tobacco Inbred And Hybrid Plants And Tobacco Products Made Thereof
  • Regulation Of Quinolate Phosphoribosyl Transferase Expression
  • Purified Tobacco Protein Involved In Nicotine Synthesis, Dna Encoding, And Use Of Sense And Antisense Dnas Corresponding Thereto To Affect Nicotine Content In Tobacco Plants
  • Photosensitivity Gene Of Plant And Utilization Thereof
  • Genetic Engineering Of Novel Plant Phenotypes
  • Nucleotide Sequences Mediating Male Fertility And Method Of Using Same
  • Flavonoid 3′,5′ Hydroxylase Gene Sequences And Uses Therefor
  • Reduced Risk Tobacco Products And Methods Of Making Same
  • Cloning Of Cytochrome P450 Genes From Nicotiana
  • Nucleotide Sequences Mediating Ferility And Method Of Using Same
  • Compositions And Methods For Minimizing Nornicotine Synthesis In Tobacco
  • Tobacco Nicotine Demethylase Genomic Clone And Uses Thereof
  • Genetically Engineered Plant Cells And Plants, As Well As Recombinant Dna Suitable Therefor
  • Tobacco Inbred Plants K326 Src, Cms K326 Src, K346 Src, Cms K346 Src, Nc1562-1 Src, Nctg-61 Src, Cms Nctg-61 Src And Hybrid Nc196 Src
  • Nicotiana Nucleic Acid Molecules And Uses Thereof
  • Nicotiana Nucleic Acid Molecules And Uses Thereof
  • Recombinant Viral Nucleic Acids
  • Tobacco Inbred Plants Albex1f And Albex1ms
  • Genetic Engineering Of Novel Plant Phenotypes
  • Method And Medicament For Inhibiting The Expression Of A Given Gene
  • Method And Medicament For Inhibiting The Expression Of A Given Gene
  • Methods Of Mediating Female Fertility In Plants
  • Tobacco Inbred And Hybrid Plants And Tobacco Products Made Thereof
  • Method Of Purifying Putrescine N-Methyltransferase From Tobacco Plant Extract With An Anion Exchange Medium
  • Plants Resistant To Wt Strains Of Cucumber Mosaic Virus
  • Plants Resistant To C Strains Of Cucumber Mosaic Virus
  • Nucleic Acids Encoding A Papaya Acc Synthase Gene
  • Pea Adp-Glucose Pyrophosphorylase Subunit Genes And Their Uses
  • Method Of Purifying Putrescine N-Methyltransferase From Tobacco Plant Extract With A Polyamine
  • Expression System For Use In Plants To Suppress Foreign Expression And Method
  • Method And Medicament For Inhibiting The Expression Of A Given Gene
  • Methods For The Regulation Of Plant Fertility
  • Materials And Methods For Producing Plants With Single-Sex Flowers
  • Tobacco Nicotine Demethylase Genomic Clone And Uses Thereof
  • Genetic Engineering Of Syringyl-Enriched Lignin In Plants
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/333866a0

    DOI

    http://dx.doi.org/10.1038/333866a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020598703


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "van der Krol", 
            "givenName": "Alexander R.", 
            "id": "sg:person.0626255112.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626255112.97"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Lenting", 
            "givenName": "Peter E.", 
            "type": "Person"
          }, 
          {
            "familyName": "Veenstra", 
            "givenName": "Jetty", 
            "id": "sg:person.01005224133.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005224133.39"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "van der Meer", 
            "givenName": "Ingrid M.", 
            "id": "sg:person.01140336306.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140336306.13"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Koes", 
            "givenName": "Ronald E.", 
            "id": "sg:person.01007106747.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007106747.18"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gerats", 
            "givenName": "Anton G. M.", 
            "id": "sg:person.0577574764.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577574764.75"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Mol", 
            "givenName": "Joseph N. M.", 
            "id": "sg:person.014217775222.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014217775222.53"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Stuitje", 
            "givenName": "Antoine R.", 
            "id": "sg:person.01311771000.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311771000.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00392185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001141944", 
              "https://doi.org/10.1007/bf00392185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00392185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001141944", 
              "https://doi.org/10.1007/bf00392185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(87)90039-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002690456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/330395a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013696821", 
              "https://doi.org/10.1038/330395a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00330509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022929931", 
              "https://doi.org/10.1007/bf00330509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bi.55.070186.003033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025043399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/313703a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028870027", 
              "https://doi.org/10.1038/313703a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00330261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049707976", 
              "https://doi.org/10.1007/bf00330261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/330677a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051981070", 
              "https://doi.org/10.1038/330677a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/12.22.8711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053487532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.227.4691.1229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062529900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2990048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062580023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3576221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062620081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1985.tb03949.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077060020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1988-06", 
        "datePublishedReg": "1988-06-01", 
        "description": "In most plants flower pigments derive from the flavonoid biosynthesis pathway. Consistent with this pathway in Petunia hybrida the key enzyme in flavonoid synthesis, chalcone synthase, is synthesized in the flower corolla, tube and anthers1. Here we show that constitutive expression of an 'anti-sense' chalcone synthase gene in transgenic petunia and tobacco plants results, with high frequency, in an altered flower pigmentation due to a reduction in levels of both the messenger RNA for the enzyme and the enzyme itself. The pattern of pigmentation varies among flowers of different transgenic plants, indicating that the activity of the anti-sense gene is influenced by DNA sequences that border its site of insertion in both a quantitative and a qualitative way. Backcrossing experiments show that the different pigmentation phenotypes resulting from the expression of anti-sense chalcone synthese gene(s) are stably inherited. These data establish that secondary metabolism in plants can be manipulated using transgenic plants that constitutively synthesize anti-sense RNA.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/333866a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6176", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "333"
          }
        ], 
        "name": "An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation", 
        "pagination": "866-869", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "62263e4ae248545eb0f0ff88e2a173b7cbe8b20b4908b0aa8bcd5fce40a05557"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/333866a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020598703"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/333866a0", 
          "https://app.dimensions.ai/details/publication/pub.1020598703"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/333866a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/333866a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/333866a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/333866a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/333866a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    143 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/333866a0 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N0160f6f3f41c4ce98eec1200ea2dbd9e
    4 schema:citation sg:pub.10.1007/bf00330261
    5 sg:pub.10.1007/bf00330509
    6 sg:pub.10.1007/bf00392185
    7 sg:pub.10.1038/313703a0
    8 sg:pub.10.1038/330395a0
    9 sg:pub.10.1038/330677a0
    10 https://doi.org/10.1002/j.1460-2075.1985.tb03949.x
    11 https://doi.org/10.1016/0092-8674(87)90039-0
    12 https://doi.org/10.1093/nar/12.22.8711
    13 https://doi.org/10.1126/science.227.4691.1229
    14 https://doi.org/10.1126/science.2990048
    15 https://doi.org/10.1126/science.3576221
    16 https://doi.org/10.1146/annurev.bi.55.070186.003033
    17 schema:datePublished 1988-06
    18 schema:datePublishedReg 1988-06-01
    19 schema:description In most plants flower pigments derive from the flavonoid biosynthesis pathway. Consistent with this pathway in Petunia hybrida the key enzyme in flavonoid synthesis, chalcone synthase, is synthesized in the flower corolla, tube and anthers1. Here we show that constitutive expression of an 'anti-sense' chalcone synthase gene in transgenic petunia and tobacco plants results, with high frequency, in an altered flower pigmentation due to a reduction in levels of both the messenger RNA for the enzyme and the enzyme itself. The pattern of pigmentation varies among flowers of different transgenic plants, indicating that the activity of the anti-sense gene is influenced by DNA sequences that border its site of insertion in both a quantitative and a qualitative way. Backcrossing experiments show that the different pigmentation phenotypes resulting from the expression of anti-sense chalcone synthese gene(s) are stably inherited. These data establish that secondary metabolism in plants can be manipulated using transgenic plants that constitutively synthesize anti-sense RNA.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N0d9d56d25391402f93993882b93ccef5
    24 N500a59b1484949b2a9c9f0e92e1a2754
    25 sg:journal.1018957
    26 schema:name An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation
    27 schema:pagination 866-869
    28 schema:productId Ne176c9299f0344109ae67db2a091fcf3
    29 Ne95a8dedc30243f086e2514d38adb165
    30 Nfa925e6fb36f4d1ba6a29f055b889045
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020598703
    32 https://doi.org/10.1038/333866a0
    33 schema:sdDatePublished 2019-04-11T01:46
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N37d530e2fa284364beb45209460b90dc
    36 schema:url http://www.nature.com/articles/333866a0
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N0160f6f3f41c4ce98eec1200ea2dbd9e rdf:first sg:person.0626255112.97
    41 rdf:rest N22afbfab647246ebbe36ee0275fe5eef
    42 N0d9d56d25391402f93993882b93ccef5 schema:issueNumber 6176
    43 rdf:type schema:PublicationIssue
    44 N22afbfab647246ebbe36ee0275fe5eef rdf:first Nca5eb2cdb78f40fe938dbacafafce6be
    45 rdf:rest N24b51dd3831844a2bd4b5737bc3ba67a
    46 N24b51dd3831844a2bd4b5737bc3ba67a rdf:first sg:person.01005224133.39
    47 rdf:rest N6befc11df1d148e7972d1b4b56c81a5c
    48 N37d530e2fa284364beb45209460b90dc schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N3c7e3a979a2048a69ffbea97c500e440 rdf:first sg:person.01007106747.18
    51 rdf:rest Nd2e8479989d147dea48f630288fddaff
    52 N500a59b1484949b2a9c9f0e92e1a2754 schema:volumeNumber 333
    53 rdf:type schema:PublicationVolume
    54 N6befc11df1d148e7972d1b4b56c81a5c rdf:first sg:person.01140336306.13
    55 rdf:rest N3c7e3a979a2048a69ffbea97c500e440
    56 Na7fe865017524f8d9483645e9da408a6 rdf:first sg:person.01311771000.76
    57 rdf:rest rdf:nil
    58 Nb5d4d7017fce453f8d862a77fae86722 rdf:first sg:person.014217775222.53
    59 rdf:rest Na7fe865017524f8d9483645e9da408a6
    60 Nca5eb2cdb78f40fe938dbacafafce6be schema:familyName Lenting
    61 schema:givenName Peter E.
    62 rdf:type schema:Person
    63 Nd2e8479989d147dea48f630288fddaff rdf:first sg:person.0577574764.75
    64 rdf:rest Nb5d4d7017fce453f8d862a77fae86722
    65 Ne176c9299f0344109ae67db2a091fcf3 schema:name dimensions_id
    66 schema:value pub.1020598703
    67 rdf:type schema:PropertyValue
    68 Ne95a8dedc30243f086e2514d38adb165 schema:name doi
    69 schema:value 10.1038/333866a0
    70 rdf:type schema:PropertyValue
    71 Nfa925e6fb36f4d1ba6a29f055b889045 schema:name readcube_id
    72 schema:value 62263e4ae248545eb0f0ff88e2a173b7cbe8b20b4908b0aa8bcd5fce40a05557
    73 rdf:type schema:PropertyValue
    74 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Biological Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Genetics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1018957 schema:issn 0090-0028
    81 1476-4687
    82 schema:name Nature
    83 rdf:type schema:Periodical
    84 sg:person.01005224133.39 schema:familyName Veenstra
    85 schema:givenName Jetty
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005224133.39
    87 rdf:type schema:Person
    88 sg:person.01007106747.18 schema:familyName Koes
    89 schema:givenName Ronald E.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007106747.18
    91 rdf:type schema:Person
    92 sg:person.01140336306.13 schema:familyName van der Meer
    93 schema:givenName Ingrid M.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140336306.13
    95 rdf:type schema:Person
    96 sg:person.01311771000.76 schema:familyName Stuitje
    97 schema:givenName Antoine R.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311771000.76
    99 rdf:type schema:Person
    100 sg:person.014217775222.53 schema:familyName Mol
    101 schema:givenName Joseph N. M.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014217775222.53
    103 rdf:type schema:Person
    104 sg:person.0577574764.75 schema:familyName Gerats
    105 schema:givenName Anton G. M.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577574764.75
    107 rdf:type schema:Person
    108 sg:person.0626255112.97 schema:familyName van der Krol
    109 schema:givenName Alexander R.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626255112.97
    111 rdf:type schema:Person
    112 sg:pub.10.1007/bf00330261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049707976
    113 https://doi.org/10.1007/bf00330261
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/bf00330509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022929931
    116 https://doi.org/10.1007/bf00330509
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf00392185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001141944
    119 https://doi.org/10.1007/bf00392185
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/313703a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028870027
    122 https://doi.org/10.1038/313703a0
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/330395a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013696821
    125 https://doi.org/10.1038/330395a0
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/330677a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051981070
    128 https://doi.org/10.1038/330677a0
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1002/j.1460-2075.1985.tb03949.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077060020
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0092-8674(87)90039-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002690456
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1093/nar/12.22.8711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053487532
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1126/science.227.4691.1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062529900
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1126/science.2990048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062580023
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1126/science.3576221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062620081
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1146/annurev.bi.55.070186.003033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025043399
    143 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...