Structures of medium-sized silicon clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-04

AUTHORS

Kai-Ming Ho, Alexandre A. Shvartsburg, Bicai Pan, Zhong-Yi Lu, Cai-Zhuang Wang, Jacob G. Wacker, James L. Fye, Martin F. Jarrold

ABSTRACT

Silicon is the most important semiconducting material in the microelectronics industry. If current miniaturization trends continue, minimum device features will soon approach the size of atomic clusters. In this size regime, the structure and properties of materials often differ dramatically from those of the bulk. An enormous effort has been devoted to determining the structures of free silicon clusters1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22. Although progress has been made for Sin with n < 8, theoretical predictions for larger clusters are contradictory2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 and none enjoy any compelling experimental support. Here we report geometries calculated for medium-sized silicon clusters using an unbiased global search with a genetic algorithm. Ion mobilities23 determined for these geometries by trajectory calculations are in excellent agreement with the values that we measure experimentally. The cluster geometries that we obtain do not correspond to fragments of the bulk. For n = 12–18 they are built on a structural motif consisting of a stack of Si9 tricapped trigonal prisms. For n ⩾ 19, our calculations predict that near-spherical cage structures become the most stable. The transition to these more spherical geometries occurs in the measured mobilities for slightly larger clusters than in the calculations, possibly because of entropic effects. More... »

PAGES

582-585

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/33369

DOI

http://dx.doi.org/10.1038/33369

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020120119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA", 
          "id": "http://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ho", 
        "givenName": "Kai-Ming", 
        "id": "sg:person.013641005722.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641005722.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shvartsburg", 
        "givenName": "Alexandre A.", 
        "id": "sg:person.01200400324.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200400324.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA", 
          "id": "http://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Bicai", 
        "id": "sg:person.0615475710.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615475710.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA", 
          "id": "http://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Zhong-Yi", 
        "id": "sg:person.01254250646.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254250646.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA", 
          "id": "http://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Cai-Zhuang", 
        "id": "sg:person.07465603354.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07465603354.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA", 
          "id": "http://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wacker", 
        "givenName": "Jacob G.", 
        "id": "sg:person.010506626133.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010506626133.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fye", 
        "givenName": "James L.", 
        "id": "sg:person.010312735461.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010312735461.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jarrold", 
        "givenName": "Martin F.", 
        "id": "sg:person.01027666714.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027666714.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/366042a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030140834", 
          "https://doi.org/10.1038/366042a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-04", 
    "datePublishedReg": "1998-04-01", 
    "description": "Silicon is the most important semiconducting material in the microelectronics industry. If current miniaturization trends continue, minimum device features will soon approach the size of atomic clusters. In this size regime, the structure and properties of materials often differ dramatically from those of the bulk. An enormous effort has been devoted to determining the structures of free silicon clusters1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22. Although progress has been made for Sin with n < 8, theoretical predictions for larger clusters are contradictory2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 and none enjoy any compelling experimental support. Here we report geometries calculated for medium-sized silicon clusters using an unbiased global search with a genetic algorithm. Ion mobilities23 determined for these geometries by trajectory calculations are in excellent agreement with the values that we measure experimentally. The cluster geometries that we obtain do not correspond to fragments of the bulk. For n = 12\u201318 they are built on a structural motif consisting of a stack of Si9 tricapped trigonal prisms. For n \u2a7e 19, our calculations predict that near-spherical cage structures become the most stable. The transition to these more spherical geometries occurs in the measured mobilities for slightly larger clusters than in the calculations, possibly because of entropic effects.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/33369", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6676", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "392"
      }
    ], 
    "keywords": [
      "silicon clusters", 
      "medium-sized silicon clusters", 
      "unbiased global search", 
      "atomic clusters", 
      "trajectory calculations", 
      "more spherical geometries", 
      "properties of materials", 
      "large clusters", 
      "size regime", 
      "theoretical predictions", 
      "excellent agreement", 
      "spherical geometry", 
      "microelectronics industry", 
      "silicon", 
      "calculations", 
      "global search", 
      "device features", 
      "trigonal prism", 
      "genetic algorithm", 
      "bulk", 
      "geometry", 
      "cage structure", 
      "Si9", 
      "clusters", 
      "free silicon", 
      "entropic effects", 
      "structure", 
      "experimental support", 
      "miniaturization trend", 
      "transition", 
      "regime", 
      "agreement", 
      "prism", 
      "enormous efforts", 
      "materials", 
      "algorithm", 
      "stack", 
      "properties", 
      "sin", 
      "mobility", 
      "structural motifs", 
      "prediction", 
      "progress", 
      "size", 
      "features", 
      "values", 
      "effect", 
      "search", 
      "fragments", 
      "efforts", 
      "industry", 
      "trends", 
      "support", 
      "motif"
    ], 
    "name": "Structures of medium-sized silicon clusters", 
    "pagination": "582-585", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020120119"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/33369"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/33369", 
      "https://app.dimensions.ai/details/publication/pub.1020120119"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_283.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/33369"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/33369'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/33369'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/33369'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/33369'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      80 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/33369 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc774d97456584e87a0ef3475f631d0e4
4 schema:citation sg:pub.10.1038/366042a0
5 schema:datePublished 1998-04
6 schema:datePublishedReg 1998-04-01
7 schema:description Silicon is the most important semiconducting material in the microelectronics industry. If current miniaturization trends continue, minimum device features will soon approach the size of atomic clusters. In this size regime, the structure and properties of materials often differ dramatically from those of the bulk. An enormous effort has been devoted to determining the structures of free silicon clusters1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22. Although progress has been made for Sin with n < 8, theoretical predictions for larger clusters are contradictory2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 and none enjoy any compelling experimental support. Here we report geometries calculated for medium-sized silicon clusters using an unbiased global search with a genetic algorithm. Ion mobilities23 determined for these geometries by trajectory calculations are in excellent agreement with the values that we measure experimentally. The cluster geometries that we obtain do not correspond to fragments of the bulk. For n = 12–18 they are built on a structural motif consisting of a stack of Si9 tricapped trigonal prisms. For n ⩾ 19, our calculations predict that near-spherical cage structures become the most stable. The transition to these more spherical geometries occurs in the measured mobilities for slightly larger clusters than in the calculations, possibly because of entropic effects.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N04ce42a9159041a79e24fe28b76a4b65
11 N2b01258416a74e58bce93883c4d076ea
12 sg:journal.1018957
13 schema:keywords Si9
14 agreement
15 algorithm
16 atomic clusters
17 bulk
18 cage structure
19 calculations
20 clusters
21 device features
22 effect
23 efforts
24 enormous efforts
25 entropic effects
26 excellent agreement
27 experimental support
28 features
29 fragments
30 free silicon
31 genetic algorithm
32 geometry
33 global search
34 industry
35 large clusters
36 materials
37 medium-sized silicon clusters
38 microelectronics industry
39 miniaturization trend
40 mobility
41 more spherical geometries
42 motif
43 prediction
44 prism
45 progress
46 properties
47 properties of materials
48 regime
49 search
50 silicon
51 silicon clusters
52 sin
53 size
54 size regime
55 spherical geometry
56 stack
57 structural motifs
58 structure
59 support
60 theoretical predictions
61 trajectory calculations
62 transition
63 trends
64 trigonal prism
65 unbiased global search
66 values
67 schema:name Structures of medium-sized silicon clusters
68 schema:pagination 582-585
69 schema:productId Nb3ee8fdafdef4e6e9dbaecff7a85ca2e
70 Nf80bd1ce634e44f180126131ca161f1f
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020120119
72 https://doi.org/10.1038/33369
73 schema:sdDatePublished 2022-10-01T06:30
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N4bb335dc5ff64c8eae69c19376110800
76 schema:url https://doi.org/10.1038/33369
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N04ce42a9159041a79e24fe28b76a4b65 schema:volumeNumber 392
81 rdf:type schema:PublicationVolume
82 N2b01258416a74e58bce93883c4d076ea schema:issueNumber 6676
83 rdf:type schema:PublicationIssue
84 N4bb335dc5ff64c8eae69c19376110800 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N579a3d7c2c594ba08af4c6f4fcb2f55e rdf:first sg:person.01200400324.01
87 rdf:rest Nf77ebf41cd2949dc9b2cc09e62c67f2a
88 N594367f3dab149fd83d563e3fcea6861 rdf:first sg:person.010506626133.01
89 rdf:rest N5eb5fd35969d47aaa16433850933bed2
90 N5eb5fd35969d47aaa16433850933bed2 rdf:first sg:person.010312735461.02
91 rdf:rest N6170b9ddefe04952a1e42cc30a547840
92 N6170b9ddefe04952a1e42cc30a547840 rdf:first sg:person.01027666714.03
93 rdf:rest rdf:nil
94 N626b22acf9c54d11968bc424fece2782 rdf:first sg:person.01254250646.91
95 rdf:rest Ncd29f61b28cb43b9af8dbbbe58b20480
96 Nb3ee8fdafdef4e6e9dbaecff7a85ca2e schema:name doi
97 schema:value 10.1038/33369
98 rdf:type schema:PropertyValue
99 Nc774d97456584e87a0ef3475f631d0e4 rdf:first sg:person.013641005722.19
100 rdf:rest N579a3d7c2c594ba08af4c6f4fcb2f55e
101 Ncd29f61b28cb43b9af8dbbbe58b20480 rdf:first sg:person.07465603354.75
102 rdf:rest N594367f3dab149fd83d563e3fcea6861
103 Nf77ebf41cd2949dc9b2cc09e62c67f2a rdf:first sg:person.0615475710.91
104 rdf:rest N626b22acf9c54d11968bc424fece2782
105 Nf80bd1ce634e44f180126131ca161f1f schema:name dimensions_id
106 schema:value pub.1020120119
107 rdf:type schema:PropertyValue
108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
109 schema:name Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
112 schema:name Materials Engineering
113 rdf:type schema:DefinedTerm
114 sg:journal.1018957 schema:issn 0028-0836
115 1476-4687
116 schema:name Nature
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.01027666714.03 schema:affiliation grid-institutes:grid.16753.36
120 schema:familyName Jarrold
121 schema:givenName Martin F.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027666714.03
123 rdf:type schema:Person
124 sg:person.010312735461.02 schema:affiliation grid-institutes:grid.16753.36
125 schema:familyName Fye
126 schema:givenName James L.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010312735461.02
128 rdf:type schema:Person
129 sg:person.010506626133.01 schema:affiliation grid-institutes:grid.34421.30
130 schema:familyName Wacker
131 schema:givenName Jacob G.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010506626133.01
133 rdf:type schema:Person
134 sg:person.01200400324.01 schema:affiliation grid-institutes:grid.16753.36
135 schema:familyName Shvartsburg
136 schema:givenName Alexandre A.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200400324.01
138 rdf:type schema:Person
139 sg:person.01254250646.91 schema:affiliation grid-institutes:grid.34421.30
140 schema:familyName Lu
141 schema:givenName Zhong-Yi
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254250646.91
143 rdf:type schema:Person
144 sg:person.013641005722.19 schema:affiliation grid-institutes:grid.34421.30
145 schema:familyName Ho
146 schema:givenName Kai-Ming
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641005722.19
148 rdf:type schema:Person
149 sg:person.0615475710.91 schema:affiliation grid-institutes:grid.34421.30
150 schema:familyName Pan
151 schema:givenName Bicai
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615475710.91
153 rdf:type schema:Person
154 sg:person.07465603354.75 schema:affiliation grid-institutes:grid.34421.30
155 schema:familyName Wang
156 schema:givenName Cai-Zhuang
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07465603354.75
158 rdf:type schema:Person
159 sg:pub.10.1038/366042a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030140834
160 https://doi.org/10.1038/366042a0
161 rdf:type schema:CreativeWork
162 grid-institutes:grid.16753.36 schema:alternateName Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
163 schema:name Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
164 rdf:type schema:Organization
165 grid-institutes:grid.34421.30 schema:alternateName Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA
166 schema:name Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, 50011, Ames, Iowa, USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...