Ontology type: schema:ScholarlyArticle
1988-04
AUTHORSPhilippa Marrack, John Kappler
ABSTRACTIn the response of T cells to foreign antigens, the ligand for the T cell α/β receptor is presented on a cell surface as a fragment of antigen complexed to one of the membrane molecules encoded in the major histocompatibility complex (MHC)1–5. The receptor apparently interacts via its variable elements (Vβ, Dβ, Jβ, Vα and Jα) with residues within both the antigen and MHC portion of the ligand. The frequency of T cells responding to a conventional antigen plus self MHC is usually quite low, presumably reflecting the relative rarity of receptors with the particular combination of variable elements to match the antigen/MHC ligand. T cells also respond to allogeneic forms of MHC molecules in the absence of added antigen6. In this case the frequency of responding T cells is very high. One hypothesis to explain this observation is that, in the absence of foreign antigen, MHC molecules are complexed to a large array of peptides derived from self-proteins7. In this case the combination of the polymorphic MHC amino acid residues and many different self peptides presents so many possible ligands that the likelihood of recognition by a given T cell receptor is quite high. The recent crystallography experiments which revealed a dramatic binding cleft on the face of a human MHC molecule5 have given impetus to this view, but as yet there is no direct supporting evidence. We have recently described a close association between murine T cell receptors utilizing the Vβ17a element and reactivity to various allogeneic forms of the murine MHC molecule, I-E (ref. 8). In this paper, we show that this I-E ligand is detected on B cells, but not on I-E+ macrophages or fibroblasts expressing a transfected I-E gene. These results strongly suggest a B cell specific product combines with I–E to form the allogeneic ligand for Vβ17a+ receptors and thus support the concept of alloreactivity described above. More... »
PAGES840-843
http://scigraph.springernature.com/pub.10.1038/332840a0
DOIhttp://dx.doi.org/10.1038/332840a0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1042396437
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/3258650
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Immunology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Line",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Crystallography",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Hybridomas",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Macrophages",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Major Histocompatibility Complex",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mice",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mice, Inbred BALB C",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mice, Inbred C3H",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Receptors, Antigen, T-Cell",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "T-Lymphocytes",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Transfection",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Departments of Biochemistry, Biophysics, Genetics and Medicine, University of Colorado Health Sciences Center, 80206, Denver, Colrado, USA",
"id": "http://www.grid.ac/institutes/grid.241116.1",
"name": [
"Howard Hughes Medical Institute at Denver, Department of Medicine, National Jewish Center for Immunology & Respiratory Medicine",
"Departments of Biochemistry, Biophysics, Genetics and Medicine, University of Colorado Health Sciences Center, 80206, Denver, Colrado, USA"
],
"type": "Organization"
},
"familyName": "Marrack",
"givenName": "Philippa",
"id": "sg:person.01066606743.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066606743.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departments of Biochemistry, Biophysics, Microbiology and Immunology and Medicine, University of Colorado Health Sciences Center, 80206, Denver, Colrado, USA",
"id": "http://www.grid.ac/institutes/grid.241116.1",
"name": [
"Howard Hughes Medical Institute at Denver, Department of Medicine, National Jewish Center for Immunology & Respiratory Medicine",
"Departments of Biochemistry, Biophysics, Microbiology and Immunology and Medicine, University of Colorado Health Sciences Center, 80206, Denver, Colrado, USA"
],
"type": "Organization"
},
"familyName": "Kappler",
"givenName": "John",
"id": "sg:person.01361470371.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361470371.87"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/317359a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036357345",
"https://doi.org/10.1038/317359a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/332035a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028163401",
"https://doi.org/10.1038/332035a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/308149a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050508510",
"https://doi.org/10.1038/308149a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/329512a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046078048",
"https://doi.org/10.1038/329512a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/329254a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044923559",
"https://doi.org/10.1038/329254a0"
],
"type": "CreativeWork"
}
],
"datePublished": "1988-04",
"datePublishedReg": "1988-04-01",
"description": "In the response of T cells to foreign antigens, the ligand for the T cell \u03b1/\u03b2 receptor is presented on a cell surface as a fragment of antigen complexed to one of the membrane molecules encoded in the major histocompatibility complex (MHC)1\u20135. The receptor apparently interacts via its variable elements (V\u03b2, D\u03b2, J\u03b2, V\u03b1 and J\u03b1) with residues within both the antigen and MHC portion of the ligand. The frequency of T cells responding to a conventional antigen plus self MHC is usually quite low, presumably reflecting the relative rarity of receptors with the particular combination of variable elements to match the antigen/MHC ligand. T cells also respond to allogeneic forms of MHC molecules in the absence of added antigen6. In this case the frequency of responding T cells is very high. One hypothesis to explain this observation is that, in the absence of foreign antigen, MHC molecules are complexed to a large array of peptides derived from self-proteins7. In this case the combination of the polymorphic MHC amino acid residues and many different self peptides presents so many possible ligands that the likelihood of recognition by a given T cell receptor is quite high. The recent crystallography experiments which revealed a dramatic binding cleft on the face of a human MHC molecule5 have given impetus to this view, but as yet there is no direct supporting evidence. We have recently described a close association between murine T cell receptors utilizing the V\u03b217a element and reactivity to various allogeneic forms of the murine MHC molecule, I-E (ref. 8). In this paper, we show that this I-E ligand is detected on B cells, but not on I-E+ macrophages or fibroblasts expressing a transfected I-E gene. These results strongly suggest a B cell specific product combines with I\u2013E to form the allogeneic ligand for V\u03b217a+ receptors and thus support the concept of alloreactivity described above.",
"genre": "article",
"id": "sg:pub.10.1038/332840a0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6167",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "332"
}
],
"keywords": [
"MHC molecules",
"foreign antigens",
"cell receptor",
"major histocompatibility complex products",
"different self peptides",
"T cell receptor",
"cell-specific products",
"murine T cell receptor",
"fragments of antigen",
"major histocompatibility complex",
"self-MHC",
"conventional antigens",
"allogeneic ligand",
"self peptides",
"MHC ligands",
"antigen",
"histocompatibility complex",
"receptors",
"relative rarity",
"likelihood of recognition",
"different cell types",
"cell types",
"cells",
"membrane molecules",
"cell surface",
"close association",
"alloreactivity",
"peptides",
"MHC",
"macrophages",
"possible ligands",
"absence",
"rarity",
"cases",
"association",
"cleft",
"fibroblasts",
"response",
"combination",
"evidence",
"frequency",
"ligands",
"amino acid residues",
"likelihood",
"genes",
"molecules",
"acid residues",
"reactivity",
"hypothesis",
"portion",
"particular combination",
"form",
"specific products",
"types",
"fragments",
"results",
"recognition",
"face",
"products",
"binding cleft",
"observations",
"impetus",
"residues",
"variable elements",
"complexes",
"view",
"elements",
"experiments",
"large array",
"concept",
"array",
"surface",
"complex products",
"paper",
"crystallography experiments"
],
"name": "T cells can distinguish between allogeneic major histocompatibility complex products on different cell types",
"pagination": "840-843",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1042396437"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/332840a0"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"3258650"
]
}
],
"sameAs": [
"https://doi.org/10.1038/332840a0",
"https://app.dimensions.ai/details/publication/pub.1042396437"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:18",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_195.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/332840a0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/332840a0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/332840a0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/332840a0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/332840a0'
This table displays all metadata directly associated to this object as RDF triples.
215 TRIPLES
22 PREDICATES
119 URIs
106 LITERALS
19 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/332840a0 | schema:about | N1f61648322244f11b69024f84b19c2b5 |
2 | ″ | ″ | N418dd2e709e14c309577c99195d713fb |
3 | ″ | ″ | N48fb954fb63c4425abc1b9529c3cec4e |
4 | ″ | ″ | N4f2cedc929414e9891d447063dcdc08c |
5 | ″ | ″ | N7a1d38cbec924453b12b309cc8c88633 |
6 | ″ | ″ | N8b09b151487748adb69ce0e9d01d123a |
7 | ″ | ″ | N8c24376c9ceb41f887ef5fea2dd218c7 |
8 | ″ | ″ | N97625d194e814dfa96052c3c61a4ac35 |
9 | ″ | ″ | Nb035802d761b47d78b8fb58bc377a8f4 |
10 | ″ | ″ | Nbee85b958ea94d2197ce7d91a45f59af |
11 | ″ | ″ | Nc309e0d4b17841bba874d38e8383f0be |
12 | ″ | ″ | Nc9c10d27a8c04630ac29fe4b42688157 |
13 | ″ | ″ | anzsrc-for:11 |
14 | ″ | ″ | anzsrc-for:1107 |
15 | ″ | schema:author | Na3bb0fff88e64c8a84833f5d12f1c66f |
16 | ″ | schema:citation | sg:pub.10.1038/308149a0 |
17 | ″ | ″ | sg:pub.10.1038/317359a0 |
18 | ″ | ″ | sg:pub.10.1038/329254a0 |
19 | ″ | ″ | sg:pub.10.1038/329512a0 |
20 | ″ | ″ | sg:pub.10.1038/332035a0 |
21 | ″ | schema:datePublished | 1988-04 |
22 | ″ | schema:datePublishedReg | 1988-04-01 |
23 | ″ | schema:description | In the response of T cells to foreign antigens, the ligand for the T cell α/β receptor is presented on a cell surface as a fragment of antigen complexed to one of the membrane molecules encoded in the major histocompatibility complex (MHC)1–5. The receptor apparently interacts via its variable elements (Vβ, Dβ, Jβ, Vα and Jα) with residues within both the antigen and MHC portion of the ligand. The frequency of T cells responding to a conventional antigen plus self MHC is usually quite low, presumably reflecting the relative rarity of receptors with the particular combination of variable elements to match the antigen/MHC ligand. T cells also respond to allogeneic forms of MHC molecules in the absence of added antigen6. In this case the frequency of responding T cells is very high. One hypothesis to explain this observation is that, in the absence of foreign antigen, MHC molecules are complexed to a large array of peptides derived from self-proteins7. In this case the combination of the polymorphic MHC amino acid residues and many different self peptides presents so many possible ligands that the likelihood of recognition by a given T cell receptor is quite high. The recent crystallography experiments which revealed a dramatic binding cleft on the face of a human MHC molecule5 have given impetus to this view, but as yet there is no direct supporting evidence. We have recently described a close association between murine T cell receptors utilizing the Vβ17a element and reactivity to various allogeneic forms of the murine MHC molecule, I-E (ref. 8). In this paper, we show that this I-E ligand is detected on B cells, but not on I-E+ macrophages or fibroblasts expressing a transfected I-E gene. These results strongly suggest a B cell specific product combines with I–E to form the allogeneic ligand for Vβ17a+ receptors and thus support the concept of alloreactivity described above. |
24 | ″ | schema:genre | article |
25 | ″ | schema:inLanguage | en |
26 | ″ | schema:isAccessibleForFree | false |
27 | ″ | schema:isPartOf | N8fe384673f984f97a0d5b9da590c0455 |
28 | ″ | ″ | Nac91f0de7d8640b9b54ca04693580ae2 |
29 | ″ | ″ | sg:journal.1018957 |
30 | ″ | schema:keywords | MHC |
31 | ″ | ″ | MHC ligands |
32 | ″ | ″ | MHC molecules |
33 | ″ | ″ | T cell receptor |
34 | ″ | ″ | absence |
35 | ″ | ″ | acid residues |
36 | ″ | ″ | allogeneic ligand |
37 | ″ | ″ | alloreactivity |
38 | ″ | ″ | amino acid residues |
39 | ″ | ″ | antigen |
40 | ″ | ″ | array |
41 | ″ | ″ | association |
42 | ″ | ″ | binding cleft |
43 | ″ | ″ | cases |
44 | ″ | ″ | cell receptor |
45 | ″ | ″ | cell surface |
46 | ″ | ″ | cell types |
47 | ″ | ″ | cell-specific products |
48 | ″ | ″ | cells |
49 | ″ | ″ | cleft |
50 | ″ | ″ | close association |
51 | ″ | ″ | combination |
52 | ″ | ″ | complex products |
53 | ″ | ″ | complexes |
54 | ″ | ″ | concept |
55 | ″ | ″ | conventional antigens |
56 | ″ | ″ | crystallography experiments |
57 | ″ | ″ | different cell types |
58 | ″ | ″ | different self peptides |
59 | ″ | ″ | elements |
60 | ″ | ″ | evidence |
61 | ″ | ″ | experiments |
62 | ″ | ″ | face |
63 | ″ | ″ | fibroblasts |
64 | ″ | ″ | foreign antigens |
65 | ″ | ″ | form |
66 | ″ | ″ | fragments |
67 | ″ | ″ | fragments of antigen |
68 | ″ | ″ | frequency |
69 | ″ | ″ | genes |
70 | ″ | ″ | histocompatibility complex |
71 | ″ | ″ | hypothesis |
72 | ″ | ″ | impetus |
73 | ″ | ″ | large array |
74 | ″ | ″ | ligands |
75 | ″ | ″ | likelihood |
76 | ″ | ″ | likelihood of recognition |
77 | ″ | ″ | macrophages |
78 | ″ | ″ | major histocompatibility complex |
79 | ″ | ″ | major histocompatibility complex products |
80 | ″ | ″ | membrane molecules |
81 | ″ | ″ | molecules |
82 | ″ | ″ | murine T cell receptor |
83 | ″ | ″ | observations |
84 | ″ | ″ | paper |
85 | ″ | ″ | particular combination |
86 | ″ | ″ | peptides |
87 | ″ | ″ | portion |
88 | ″ | ″ | possible ligands |
89 | ″ | ″ | products |
90 | ″ | ″ | rarity |
91 | ″ | ″ | reactivity |
92 | ″ | ″ | receptors |
93 | ″ | ″ | recognition |
94 | ″ | ″ | relative rarity |
95 | ″ | ″ | residues |
96 | ″ | ″ | response |
97 | ″ | ″ | results |
98 | ″ | ″ | self peptides |
99 | ″ | ″ | self-MHC |
100 | ″ | ″ | specific products |
101 | ″ | ″ | surface |
102 | ″ | ″ | types |
103 | ″ | ″ | variable elements |
104 | ″ | ″ | view |
105 | ″ | schema:name | T cells can distinguish between allogeneic major histocompatibility complex products on different cell types |
106 | ″ | schema:pagination | 840-843 |
107 | ″ | schema:productId | N0b9e102168a349c68bff3bdd604a614e |
108 | ″ | ″ | Na860a0d248394e2786fe8280c1483553 |
109 | ″ | ″ | Ndb9aa9f88b4e4799a7dc17bd03f973db |
110 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042396437 |
111 | ″ | ″ | https://doi.org/10.1038/332840a0 |
112 | ″ | schema:sdDatePublished | 2022-05-20T07:18 |
113 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
114 | ″ | schema:sdPublisher | N3ce491911f2249beb97bf58c5225af98 |
115 | ″ | schema:url | https://doi.org/10.1038/332840a0 |
116 | ″ | sgo:license | sg:explorer/license/ |
117 | ″ | sgo:sdDataset | articles |
118 | ″ | rdf:type | schema:ScholarlyArticle |
119 | N0b9e102168a349c68bff3bdd604a614e | schema:name | dimensions_id |
120 | ″ | schema:value | pub.1042396437 |
121 | ″ | rdf:type | schema:PropertyValue |
122 | N1f61648322244f11b69024f84b19c2b5 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
123 | ″ | schema:name | T-Lymphocytes |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | N3ce491911f2249beb97bf58c5225af98 | schema:name | Springer Nature - SN SciGraph project |
126 | ″ | rdf:type | schema:Organization |
127 | N418dd2e709e14c309577c99195d713fb | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
128 | ″ | schema:name | Hybridomas |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | N48fb954fb63c4425abc1b9529c3cec4e | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
131 | ″ | schema:name | Mice |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | N4f2cedc929414e9891d447063dcdc08c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
134 | ″ | schema:name | Mice, Inbred C3H |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | N7a1d38cbec924453b12b309cc8c88633 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
137 | ″ | schema:name | Receptors, Antigen, T-Cell |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | N8a642bd89cce41ec98fdb293ce93b047 | rdf:first | sg:person.01361470371.87 |
140 | ″ | rdf:rest | rdf:nil |
141 | N8b09b151487748adb69ce0e9d01d123a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
142 | ″ | schema:name | Transfection |
143 | ″ | rdf:type | schema:DefinedTerm |
144 | N8c24376c9ceb41f887ef5fea2dd218c7 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
145 | ″ | schema:name | Macrophages |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | N8fe384673f984f97a0d5b9da590c0455 | schema:issueNumber | 6167 |
148 | ″ | rdf:type | schema:PublicationIssue |
149 | N97625d194e814dfa96052c3c61a4ac35 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
150 | ″ | schema:name | Cell Line |
151 | ″ | rdf:type | schema:DefinedTerm |
152 | Na3bb0fff88e64c8a84833f5d12f1c66f | rdf:first | sg:person.01066606743.28 |
153 | ″ | rdf:rest | N8a642bd89cce41ec98fdb293ce93b047 |
154 | Na860a0d248394e2786fe8280c1483553 | schema:name | doi |
155 | ″ | schema:value | 10.1038/332840a0 |
156 | ″ | rdf:type | schema:PropertyValue |
157 | Nac91f0de7d8640b9b54ca04693580ae2 | schema:volumeNumber | 332 |
158 | ″ | rdf:type | schema:PublicationVolume |
159 | Nb035802d761b47d78b8fb58bc377a8f4 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
160 | ″ | schema:name | Major Histocompatibility Complex |
161 | ″ | rdf:type | schema:DefinedTerm |
162 | Nbee85b958ea94d2197ce7d91a45f59af | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
163 | ″ | schema:name | Mice, Inbred BALB C |
164 | ″ | rdf:type | schema:DefinedTerm |
165 | Nc309e0d4b17841bba874d38e8383f0be | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
166 | ″ | schema:name | Animals |
167 | ″ | rdf:type | schema:DefinedTerm |
168 | Nc9c10d27a8c04630ac29fe4b42688157 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
169 | ″ | schema:name | Crystallography |
170 | ″ | rdf:type | schema:DefinedTerm |
171 | Ndb9aa9f88b4e4799a7dc17bd03f973db | schema:name | pubmed_id |
172 | ″ | schema:value | 3258650 |
173 | ″ | rdf:type | schema:PropertyValue |
174 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
175 | ″ | schema:name | Medical and Health Sciences |
176 | ″ | rdf:type | schema:DefinedTerm |
177 | anzsrc-for:1107 | schema:inDefinedTermSet | anzsrc-for: |
178 | ″ | schema:name | Immunology |
179 | ″ | rdf:type | schema:DefinedTerm |
180 | sg:journal.1018957 | schema:issn | 0028-0836 |
181 | ″ | ″ | 1476-4687 |
182 | ″ | schema:name | Nature |
183 | ″ | schema:publisher | Springer Nature |
184 | ″ | rdf:type | schema:Periodical |
185 | sg:person.01066606743.28 | schema:affiliation | grid-institutes:grid.241116.1 |
186 | ″ | schema:familyName | Marrack |
187 | ″ | schema:givenName | Philippa |
188 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066606743.28 |
189 | ″ | rdf:type | schema:Person |
190 | sg:person.01361470371.87 | schema:affiliation | grid-institutes:grid.241116.1 |
191 | ″ | schema:familyName | Kappler |
192 | ″ | schema:givenName | John |
193 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361470371.87 |
194 | ″ | rdf:type | schema:Person |
195 | sg:pub.10.1038/308149a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050508510 |
196 | ″ | ″ | https://doi.org/10.1038/308149a0 |
197 | ″ | rdf:type | schema:CreativeWork |
198 | sg:pub.10.1038/317359a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036357345 |
199 | ″ | ″ | https://doi.org/10.1038/317359a0 |
200 | ″ | rdf:type | schema:CreativeWork |
201 | sg:pub.10.1038/329254a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044923559 |
202 | ″ | ″ | https://doi.org/10.1038/329254a0 |
203 | ″ | rdf:type | schema:CreativeWork |
204 | sg:pub.10.1038/329512a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046078048 |
205 | ″ | ″ | https://doi.org/10.1038/329512a0 |
206 | ″ | rdf:type | schema:CreativeWork |
207 | sg:pub.10.1038/332035a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028163401 |
208 | ″ | ″ | https://doi.org/10.1038/332035a0 |
209 | ″ | rdf:type | schema:CreativeWork |
210 | grid-institutes:grid.241116.1 | schema:alternateName | Departments of Biochemistry, Biophysics, Genetics and Medicine, University of Colorado Health Sciences Center, 80206, Denver, Colrado, USA |
211 | ″ | ″ | Departments of Biochemistry, Biophysics, Microbiology and Immunology and Medicine, University of Colorado Health Sciences Center, 80206, Denver, Colrado, USA |
212 | ″ | schema:name | Departments of Biochemistry, Biophysics, Genetics and Medicine, University of Colorado Health Sciences Center, 80206, Denver, Colrado, USA |
213 | ″ | ″ | Departments of Biochemistry, Biophysics, Microbiology and Immunology and Medicine, University of Colorado Health Sciences Center, 80206, Denver, Colrado, USA |
214 | ″ | ″ | Howard Hughes Medical Institute at Denver, Department of Medicine, National Jewish Center for Immunology & Respiratory Medicine |
215 | ″ | rdf:type | schema:Organization |